Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for Ca2+-induced activation of human PAD4

Abstract

Peptidylarginine deiminase 4 (PAD4) is a Ca2+-dependent enzyme that catalyzes the conversion of protein arginine residues to citrulline. Its gene is a susceptibility locus for rheumatoid arthritis. Here we present the crystal structure of Ca2+-free wild-type PAD4, which shows that the polypeptide chain adopts an elongated fold in which the N-terminal domain forms two immunoglobulin-like subdomains, and the C-terminal domain forms an α/β propeller structure. Five Ca2+-binding sites, none of which adopt an EF-hand motif, were identified in the structure of a Ca2+-bound inactive mutant with and without bound substrate. These structural data indicate that Ca2+ binding induces conformational changes that generate the active site cleft. Our findings identify a novel mechanism for enzyme activation by Ca2+ ions, and are important for understanding the mechanism of protein citrullination and for developing PAD-inhibiting drugs for the treatment of rheumatoid arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of PAD4.
Figure 2: Structure of the C-terminal domain in PAD4.
Figure 3: Structure of the substrate- and Ca2+-binding sites in PAD4.
Figure 4: Electrostatic surface potentials of Ca2+-free PAD4 (left), Ca2+-bound PAD4 (middle) and the substrate complex (right).
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Vossenaar, E.R., Zendman, A.J.W., Venrooij, W.J. & Pruijn, G.J.M. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25, 1106–1118 (2003).

    Article  CAS  Google Scholar 

  2. Imparl, J.M., Senshu, T. & Graves, D.J.M. Studies of calcineurin-calmodulin interaction: probing the role of arginine residues using peptidylarginine deiminase. Arch. Biochem. Biophys. 318, 370–377 (1995).

    Article  CAS  Google Scholar 

  3. Lamensa, J.W. & Moscarello, M.A. Deimination of human myelin basic protein by a peptidylarginine deiminase from bovine brain. J. Neurochem. 61, 987–996 (1993).

    Article  CAS  Google Scholar 

  4. Tarcsa, E. et al. Protein unfolding by peptidylarginine deiminase. J. Biol. Chem. 271, 30709–30716 (1996).

    Article  CAS  Google Scholar 

  5. Watanabe, K. et al. Combined biochemical and immunochemical comparison of peptidylarginine deiminases present in various tissues. Biochim. Biophys. Acta 966, 375–383 (1988).

    Article  CAS  Google Scholar 

  6. Terakawa, H., Takahara, H. & Sugawara, K. Three types of mouse peptidylarginine deiminase: characterization and tissue distribution. J. Biochem. 110, 661–666 (1991).

    Article  CAS  Google Scholar 

  7. Guerrin M. et al. cDNA cloning, gene organization and expression analysis of human peptidylarginine deiminase type I. Biochem. J. 370, 167–174 (2003).

    Article  CAS  Google Scholar 

  8. Ishigami, A. et al. Human peptidylarginine deiminase type II: molecular cloning, gene organization, and expression in human skin. Arch. Biochem. Biophys. 407, 25–31 (2002).

    Article  CAS  Google Scholar 

  9. Kanno, T. et al. T. Human peptidylarginine deiminase type III: molecular cloning and nucleotide sequence of the cDNA, properties of the recombinant enzyme, and immunohistochemical localization in human skin. J. Invest. Dermatol. 115, 813–823 (2000).

    Article  CAS  Google Scholar 

  10. Nakashima, K. et al. Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1α, 25-dihydroxyvitamin D3 . J. Biol. Chem. 274, 27786–27792 (1999).

    Article  CAS  Google Scholar 

  11. Chavanas, S. et al. Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6. Gene 330, 19–27 (2004).

    Article  CAS  Google Scholar 

  12. Senshu, T., Akiyama, K., Ishigami, A. & Nomura, K. Studies on specificity of peptidylarginine deiminase reactions using an immunochemical probe that recognizes an enzymatically deiminated partial sequence of mouse keratin K1. J. Dermatol. Sci. 21, 113–126 (1999).

    Article  CAS  Google Scholar 

  13. Ishida-Yamamoto, A. et al. Sequential reorganization of cornified cell keratin filaments involving filaggrin-mediated compaction and keratin 1 deimination. J. Invest. Dermatol. 118, 282–287 (2002).

    Article  CAS  Google Scholar 

  14. Moscarello, M.A., Pritzker, L.B., Mastronardi, F.G. & Wood, D.D. Peptidylarginine deiminase: a candidate factor in demyelinating disease. J. Neurochem. 81, 335–343 (2002).

    Article  CAS  Google Scholar 

  15. Pritzker, L.B., Nguyen, T.A. & Moscarello, M.A. The developmental expression and activity of peptidylarginine deiminase in the mouse. Neurosci. Lett. 266, 161–164 (1999).

    Article  CAS  Google Scholar 

  16. Rogers, G., Winter, B., McLaughlan, C., Powell, B. & Nesci, T. Peptidylarginine deiminase of the hair follicle: characterization, localization, and function in keratinizing tissues. J. Invest. Dermatol. 108, 700–707 (1997).

    Article  CAS  Google Scholar 

  17. Hagiwara, T., Nakashima, K., Hirano, H., Senshu, T. & Yamada, M. Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem. Biophys. Res. Commun. 290, 979–983 (2002).

    Article  CAS  Google Scholar 

  18. Nakashima, K., Hagiwara, T. & Yamada, M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 277, 49562–49568 (2002).

    Article  CAS  Google Scholar 

  19. Wright, P.W. et al. ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev. Biol. 256, 74–89 (2003).

    Article  Google Scholar 

  20. Ishida-Yamamoto, A. et al. Decreased deiminated keratin K1 in psoriatic hyperproliferative epidermis. J. Invest. Dermatol. 114, 701–705 (2000).

    Article  CAS  Google Scholar 

  21. Wood, D.D., Bilbao, J.M., O'Connors, P. & Moscarello, M.A. Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann. Neurol. 40, 18–24 (1996).

    Article  CAS  Google Scholar 

  22. Masson-Bessière, C. et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the α- and β-chains of fibrin. J. Immunol. 166, 4177–4184 (2001).

    Article  Google Scholar 

  23. van Boekel, M.A., Vossenaar, E.R., van den Hoogen, F.H. & van Venrooij, W.J. Autoantibody systems in rheumatoid arthritis: specificity, sensitivity and diagnostic value. Arthritis Res. 4, 87–93 (2002).

    Article  CAS  Google Scholar 

  24. Suzuki, A. et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 395–402 (2003).

    Article  CAS  Google Scholar 

  25. Humm, A., Fritsche, E., Steinbacher, S. & Huber, R. Crystal structure and mechanism of human L-arginine: glycine amidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis. EMBO J. 16, 3373–3385 (1997).

    Article  CAS  Google Scholar 

  26. Takahara, H., Okamoto, H. & Sugawara, K. Calcium-dependent properties of peptidylarginine deiminase from rabbit skeletal muscle. Agric. Biol. Chem. 50, 2899–2904 (1986).

    CAS  Google Scholar 

  27. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  28. Wu, H. et al. Kinetic and structural analysis of mutant CD4 receptors that are defective in HIV gp120 binding. Proc. Natl. Acad. Sci. USA. 93, 15030–15035 (1996).

    Article  CAS  Google Scholar 

  29. Xiong, J.P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001).

    Article  CAS  Google Scholar 

  30. Tan, K. et al. The structure of immunoglobulin superfamily domains 1 and 2 of MAdCAM-1 reveals novel features important for integrin recognition. Structure 6, 793–801 (1998).

    Article  CAS  Google Scholar 

  31. Wonhwa, C. Membrane targeting by C1 and C2 domains. J. Biol. Chem. 276, 32407–32410 (2001).

    Article  Google Scholar 

  32. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 (1998).

    Article  CAS  Google Scholar 

  33. Murray-Rust, J. et al. Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase. Nat. Struct. Biol. 8, 679–683 (2001).

    Article  CAS  Google Scholar 

  34. Galkin, A. et al. Structural insight into arginine degradation by arginine deiminase, an antibacterial and parasite drug target. J. Biol. Chem. 279, 14001–14008 (2004).

    Article  CAS  Google Scholar 

  35. Das, K. et al. Crystal structures of arginine deiminase with covalent reaction intermediates: implications for catalytic mechanism. Structure 12, 657–667 (2004).

    Article  CAS  Google Scholar 

  36. Khorchid, A. & Ikura, M. How calpain is activated by calcium. Nat. Struct. Biol. 9, 239–241 (2002).

    Article  CAS  Google Scholar 

  37. Ahvazi, B., Kim, H.C., Kee, S.H., Nemes, Z. & Steinert, P.M. Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions changes structure for activation. EMBO J. 21, 2055–2067 (2002).

    Article  CAS  Google Scholar 

  38. Nomura, K. Specificity and Mode of action of the muscle-type protein-arginine deiminase. Arch. Biochem. Biophys. 293, 362–369 (1991).

    Article  Google Scholar 

  39. Jones, S. & Thornton, J.M. Protein-protein interactions: a review of protein dimer structures. Prog. Biophys. Mol. Biol. 63, 31–59 (1995).

    Article  CAS  Google Scholar 

  40. Svergun, D.I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2866 (1999).

    Article  CAS  Google Scholar 

  41. Arita, K., Hashimoto, H., Shimizu, T., Yamada, M. & Sato, M. Crystallization and preliminary X-ray crystallographic analysis of human peptidylarginine deiminase V. Acta Crystallogr. D 59, 2332–2333 (2003).

    Article  Google Scholar 

  42. Pflugrath, J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D 55, 1718–1725 (1999).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  44. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  45. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction method. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  46. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  47. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  48. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  49. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  50. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M.Y., T.K. and K.M. for data collection at SPring-8 and N.M., N.I., M.S. and S.W. for data collection at PF-AR. This work was supported by grants-in-aid for young scientists (B) from the Japan Society of the Promotion of Science (JSPS) to H.H. (14780515), grants-in-aid for scientific research (C) from the JSPS to T.S. (15570101) and M.Y. (15570122), and by the Japan Ministry of Education, Culture, Sports, Science and Technology Project on Protein Structural and Functional Analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Sato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Multiple sequence alignment of human PADs. (PDF 731 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arita, K., Hashimoto, H., Shimizu, T. et al. Structural basis for Ca2+-induced activation of human PAD4. Nat Struct Mol Biol 11, 777–783 (2004). https://doi.org/10.1038/nsmb799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing