Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HBP1 and Mad1 repressors bind the Sin3 corepressor PAH2 domain with opposite helical orientations

Abstract

Recruitment of the histone deacetylase (HDAC)-associated Sin3 corepressor is an obligatory step in many eukaryotic gene silencing pathways. Here we show that HBP1, a cell cycle inhibitor and regulator of differentiation, represses transcription in a HDAC/Sin3-dependent manner by targeting the mammalian Sin3A (mSin3A) PAH2 domain. HBP1 is unrelated to the Mad1 repressor for which high-resolution structures in complex with PAH2 have been described. We show that like Mad1, the HBP1 transrepression domain binds through a helical structure to the hydrophobic cleft of mSin3A PAH2. Notably, the HBP1 helix binds PAH2 in a reversed orientation relative to Mad1 and, equally unexpectedly, this is correlated with a chain reversal of the minimal Sin3 interaction motifs. These results not only provide insights into how multiple, unrelated transcription factors recruit the same coregulator, but also have implications for how sequence similarity searches are conducted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HBP1 binds mSin3.
Figure 2: Defining the minimal interaction domains of HBP1 and mSin3A.
Figure 3: NMR spectra establishing a specific interaction between mSin3A PAH2 and HBP1 SID.
Figure 4: Solution structures of the mSin3A PAH2–HBP1 SID complex and the newly refined mSin3A PAH2–Mad1 SID complex.
Figure 5: HBP1 SID binds to a deep hydrophobic cleft in the mSin3A PAH2 domain.
Figure 6: A comparison of intermolecular interactions in the PAH2–HBP1 SID and PAH2–Mad1 SID complexes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Elgin, S.C.R. & Workman, J.L. Chromatin Structure and Gene Expression 328 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  2. Ptashne, M. & Gann, A. Genes and Signals 192 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2002).

    Google Scholar 

  3. Burke, L.J. & Baniahmad, A. Co-repressors 2000. FASEB J. 14, 1876–1888 (2000).

    Article  CAS  Google Scholar 

  4. Chan, H.M. & La Thangue, N.B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363–2373 (2001).

    CAS  PubMed  Google Scholar 

  5. Knoepfler, P.S. & Eisenman, R.N. Sin meets NuRD and other tails of repression. Cell 99, 447–450 (1999).

    Article  CAS  Google Scholar 

  6. Ayer, D.E., Lawrence, Q.A. & Eisenman, R.N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767–776 (1995).

    Article  CAS  Google Scholar 

  7. Schreiber-Agus, N. et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80, 777–786 (1995).

    Article  CAS  Google Scholar 

  8. Hurlin, P.J., Queva, C. & Eisenman, R.N. Mnt: a novel Max-interacting protein and Myc antagonist. Curr. Top. Microbiol. Immunol. 224, 115–121 (1997).

    CAS  PubMed  Google Scholar 

  9. David, G. et al. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 16, 2549–2556 (1998).

    Article  CAS  Google Scholar 

  10. Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998).

    Article  CAS  Google Scholar 

  11. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  Google Scholar 

  12. Murphy, M. et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 13, 2490–2501 (1999).

    Article  CAS  Google Scholar 

  13. Koipally, J., Renold, A., Kim, J. & Georgopoulos, K. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J. 18, 3090–3100 (1999).

    Article  CAS  Google Scholar 

  14. Grimes, J.A. et al. The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. J. Biol. Chem. 275, 9461–9467 (2000).

    Article  CAS  Google Scholar 

  15. Naruse, Y., Aoki, T., Kojima, T. & Mori, N. Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc. Natl. Acad. Sci. USA 96, 13691–13696 (1999).

    Article  CAS  Google Scholar 

  16. Yang, Q. et al. The winged-helix/forkhead protein myocyte nuclear factor beta (MNF-β) forms a co-repressor complex with mammalian sin3B. Biochem. J. 345, 335–343 (2000).

    Article  CAS  Google Scholar 

  17. Zhang, J.S. et al. A conserved α-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A. Mol. Cell. Biol. 21, 5041–5049 (2001).

    Article  CAS  Google Scholar 

  18. Wotton, D., Knoepfler, P.S., Laherty, C.D., Eisenman, R.N. & Massague, J. The Smad transcriptional corepressor TGIF recruits mSin3. Cell Growth Diff. 12, 457–463 (2001).

    CAS  PubMed  Google Scholar 

  19. Washburn, B.K. & Esposito, R.E. Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol. Cell. Biol. 21, 2057–2069 (2001).

    Article  CAS  Google Scholar 

  20. Ahringer, J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet. 16, 351–356 (2000).

    Article  CAS  Google Scholar 

  21. Ayer, D.E. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol. 9, 193–198 (1999).

    Article  CAS  Google Scholar 

  22. Ng, H.H. & Bird, A. Histone deacetylases: silencers for hire. Trends Biochem. Sci. 25, 121–126 (2000).

    Article  CAS  Google Scholar 

  23. Brubaker, K. et al. Solution structure of the interacting domains of the Mad-Sin3 complex: implications for recruitment of a chromatin-modifying complex. Cell 103, 655–665 (2000).

    Article  CAS  Google Scholar 

  24. Spronk, C.A. et al. The Mad1-Sin3B interaction involves a novel helical fold. Nat. Struct. Biol. 7, 1100–1104 (2000).

    Article  CAS  Google Scholar 

  25. van Ingen, H. et al. Extension of the binding motif of the Sin3 interacting domain of the Mad family proteins. Biochemistry 43, 46–54 (2004).

    Article  CAS  Google Scholar 

  26. Lavender, P., Vandel, L., Bannister, A.J. & Kouzarides, T. The HMG-box transcription factor HBP1 is targeted by the pocket proteins and E1A. Oncogene 14, 2721–2728 (1997).

    Article  CAS  Google Scholar 

  27. Tevosian, S.G. et al. HBP1: a HMG box transcriptional repressor that is targeted by the retinoblastoma family. Genes Dev. 11, 383–396 (1997).

    Article  CAS  Google Scholar 

  28. Yochum, G.S. & Ayer, D.E. Pf1, a novel PHD zinc finger protein that links the TLE corepressor to the mSin3A-histone deacetylase complex. Mol. Cell. Biol. 21, 4110–4118 (2001).

    Article  CAS  Google Scholar 

  29. Laherty, C.D. et al. Histone deacetylases associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89, 349–356 (1997).

    Article  CAS  Google Scholar 

  30. Ayer, D.E. & Eisenman, R.N. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev 7, 2110–2119 (1993).

    Article  CAS  Google Scholar 

  31. Blackwood, E.M., Luscher, B. & Eisenman, R.N. Myc and Max associate in vivo. Genes Dev 6, 71–80 (1992).

    Article  CAS  Google Scholar 

  32. Shih, H.H., Tevosian, S.G. & Yee, A.S. Regulation of differentiation by HBP1, a target of the retinoblastoma protein. Mol. Cell. Biol. 18, 4732–4743 (1998).

    Article  CAS  Google Scholar 

  33. Kadosh, D. & Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–371 (1997).

    Article  CAS  Google Scholar 

  34. Linge, J.P., Habeck, M., Rieping, W. & Nilges, M. ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19, 315–316 (2003).

    Article  CAS  Google Scholar 

  35. Cowley, S.M. et al. Functional analysis of the Mad1-mSin3A repressor-corepressor interaction reveals determinants of specificity, affinity, and transcriptional response. Mol. Cell. Biol. 24, 2698–2709 (2004).

    Article  CAS  Google Scholar 

  36. Gartel, A.L. et al. Activation and repression of p21(WAF1/CIP1) transcription by Rb binding proteins. Oncogene 17, 3463–3469 (1998).

    Article  CAS  Google Scholar 

  37. Sampson, E.M. et al. Negative regulation of the Wnt-β-catenin pathway by the transcriptional repressor HBP1. EMBO J. 20, 4500–4511 (2001).

    Article  CAS  Google Scholar 

  38. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  Google Scholar 

  39. Pang, Y.P., Kumar, G.A., Zhang, J.S. & Urrutia, R. Differential binding of Sin3 interacting repressor domains to the PAH2 domain of Sin3A. FEBS Lett. 548, 108–112 (2003).

    Article  CAS  Google Scholar 

  40. Berk, A.J. Activation of RNA polymerase II transcription. Curr. Opin. Cell Biol. 11, 330–335 (1999).

    Article  CAS  Google Scholar 

  41. Xu, H.E. et al. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA 98, 13919–13924 (2001).

    Article  CAS  Google Scholar 

  42. Xu, H.E. et al. Structural basis for antagonist-mediated recruitment of nuclear co- repressors by PPARα. Nature 415, 813–817 (2002).

    Article  CAS  Google Scholar 

  43. Hoeflich, K.P. & Ikura, M. Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108, 739–742 (2002).

    Article  CAS  Google Scholar 

  44. Kuriyan, J. & Cowburn, D. Modular peptide recognition domains in eukaryotic signaling. Annu. Rev. Biophys. Biomol. Struct. 26, 259–288 (1997).

    Article  CAS  Google Scholar 

  45. Laherty, C.D. et al. SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol. Cell 2, 33–42 (1998).

    Article  CAS  Google Scholar 

  46. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  Google Scholar 

  47. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  48. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  49. Laskowski, R.A., Rullman, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  50. McDonald, I.K. & Thornton, J.M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994).

    Article  CAS  Google Scholar 

  51. Sanner, M.F., Olson, A.J. & Spehner, J.C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996).

    Article  CAS  Google Scholar 

  52. Carson, M. Ribbons. In Macromolecular Crystallography 277, 493–505 (Academic, San Diego, 1997).

    Chapter  Google Scholar 

  53. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Adams for assistance with pull-down assays. This work was supported by funds from the March of Dimes Birth Defects Foundation (no. 5-FY00-605) and the US National Institutes of Health (NIH) (GM 64715) to I.R. and by funds from the NIH (CA 57138) and an American Cancer Society research professorship to R.N.E. K.A.S. was supported by an NIH molecular biophysics training grant and P.S.K. is a special fellow of the Leukemia and Lymphoma Society. We are grateful to the Lurie Comprehensive Cancer Center for supporting structural biology research at Northwestern and the Keck Biophysics Facility for access to instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert N Eisenman or Ishwar Radhakrishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

ITC binding isotherms resulting from titrations of mSin3A PAH2 with HBP1 SID peptide (residues 358–380). (PDF 29 kb)

Supplementary Fig. 2

Primary and secondary NMR data establishing a helical conformation for HBP1 SID and the mode of interaction with the mSin3A PAH2 domain. (PDF 263 kb)

Supplementary Fig. 3

Primary and secondary NMR data establishing a helical conformation for Mad1 SID and the mode of interaction with the mSin3A PAH2 domain. (PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swanson, K., Knoepfler, P., Huang, K. et al. HBP1 and Mad1 repressors bind the Sin3 corepressor PAH2 domain with opposite helical orientations. Nat Struct Mol Biol 11, 738–746 (2004). https://doi.org/10.1038/nsmb798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing