Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a Rad51 filament

Abstract

Rad51, the major eukaryotic homologous recombinase, is important for the repair of DNA damage and the maintenance of genomic diversity and stability. The active form of this DNA-dependent ATPase is a helical filament within which the search for homology and strand exchange occurs. Here we present the crystal structure of a Saccharomyces cerevisiae Rad51 filament formed by a gain-of-function mutant. This filament has a longer pitch than that seen in crystals of Rad51's prokaryotic homolog RecA, and places the ATPase site directly at a new interface between protomers. Although the filament exhibits approximate six-fold symmetry, alternate protein-protein interfaces are slightly different, implying that the functional unit of Rad51 within the filament may be a dimer. Additionally, we show that mutation of His352, which lies at this new interface, markedly disrupts DNA binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N-terminally truncated Rad51 catalyzes strand exchange.
Figure 2: Filaments of Rad51 and RecA.
Figure 3: Oligomerization of Rad51.
Figure 4: The Rad51 filament has two types of protomer-protomer interactions at the ATPase site.
Figure 5: Binding to ssDNA (φX174).
Figure 6: Tyrosine phosphorylation site at the protomer-protomer interface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. West, S.C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell. Biol. 4, 435–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Morgan, E.A., Shah, N. & Symington, L.S. The requirement for ATP hydrolysis by Saccharomyces cerevisiae Rad51 is bypassed by mating-type heterozygosity or RAD54 in high copy. Mol. Cell. Biol. 22, 6336–6343 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sung, P. & Stratton, S.A. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J. Biol. Chem. 271, 27983–27986 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D. & Rehrauer, W.M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cox, M.M. The bacterial RecA protein as a motor protein. Annu. Rev. Microbiol. 57, 551–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Pellegrini, L. et al. Insights into DNA recombination from the structure of a Rad51–BRCA2 complex. Nature 420, 287–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Story, R.M., Weber, I.T. & Steitz, T.A. The structure of the E. coli recA protein monomer and polymer. Nature 355, 318–325 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Shin, D.S. et al. Full-length archaeal Rad51 structure and mutants: mechanisms for Rad51 assembly and control by BRCA2. EMBO J. 22, 4566–4576 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singleton, M.R., Sawaya, M.R., Ellenberger, T. & Wigley, D.B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Niedenzu, T., Roleke, D., Bains, G., Scherzinger, E. & Saenger, W. Crystal structure of the hexameric replicative helicase RepA of plasmid RSF1010. J. Mol. Biol. 306, 479–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Caruthers, J.M. & McKay, D.B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Aihara, H., Ito, Y., Kurumizaka, H., Yokoyama, S. & Shibata, T. The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. J. Mol. Biol. 290, 495–504 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Yu, X., Jacobs, S.A., West, S.C., Ogawa, T. & Egelman, E.H. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl. Acad. Sci. USA 98, 8419–8424 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Egelman, E.H. Does a stretched DNA structure dictate the helical geometry of RecA-like filaments? J. Mol. Biol. 309, 539–542 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. VanLoock, M.S. et al. Complexes of RecA with LexA and RecX differentiate between active and inactive RecA nucleoprotein filaments. J. Mol. Biol. 333, 345–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. VanLoock, M.S. et al. ATP-mediated conformational changes in the RecA filament. Structure 11, 187–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Kelley De Zutter, J., Forget, A.L., Logan, K.M. & Knight, K.L. Phe217 regulates the transfer of allosteric information across the subunit interface of the RecA protein filament. Structure 9, 47–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Lauder, S.D. & Kowalczykowski, S.C. Asymmetry in the recA protein-DNA filament. J. Biol. Chem. 266, 5450–5458 (1991).

    CAS  PubMed  Google Scholar 

  21. Fortin, G.S. & Symington, L.S. Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51–DNA complexes. EMBO J. 21, 3160–3170 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Datta, S. et al. Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): implications for decreased ATPase activity and molecular aggregation. Nucleic Acids Res. 28, 4964–4973 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Datta, S., Ganesh, N., Chandra, N.R., Muniyappa, K. & Vijayan, M. Structural studies on MtRecA–nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition. Proteins 50, 474–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Yuan, Z.M. et al. Regulation of Rad51 function by c-Abl in response to DNA damage. J. Biol. Chem. 273, 3799–3802 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, G. et al. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J. Biol. Chem. 274, 12748–12752 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Menge, K.L. & Bryant, F.R. ATP-stimulated hydrolysis of GTP by RecA protein: kinetic consequences of cooperative RecA protein-ATP interactions. Biochemistry 27, 2635–2640 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Hingorani, M.M., Washington, M.T., Moore, K.C. & Patel, S.S. The dTTPase mechanism of T7 DNA helicase resembles the binding change mechanism of the F1-ATPase. Proc. Natl. Acad. Sci. USA 94, 5012–5017 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marians, K.J. Crawling and wiggling on DNA: structural insights to the mechanism of DNA unwinding by helicases. Structure Fold. Des. 8, R227–R235 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Zaitseva, E.M., Zaitsev, E.N. & Kowalczykowski, S.C. The DNA binding properties of Saccharomyces cerevisiae Rad51 protein. J. Biol. Chem. 274, 2907–2915 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi, M. & Norden, B. Structure of RecA–DNA complex and mechanism of DNA strand exchange reaction in homologous recombination. Adv. Biophys. 30, 1–35 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kissinger, C.R., Gehlhaar, D.K. & Fogel, D.B. Rapid automated molecular replacement by evolutionary search. Acta Crystallogr. D 55, 484–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Cowtan, K.D. & Zhang, K.Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  36. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Mazin, A.V., Zaitseva, E., Sung, P. & Kowalczykowski, S.C. Tailed duplex DNA is the preferred substrate for Rad51 protein-mediated homologous pairing. EMBO J. 19, 1148–1156 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Story, R.M. & Steitz, T.A. Structure of the recA protein–ADP complex. Nature 355, 374–376 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of BioCARS and of Structural Biology Center for help with data collection. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract no. W-31-109-Eng-38. Use of the BioCARS Sector 14 was supported by the US National Institutes of Health (NIH), National Center for Research Resources, under grant RR07707. This work was supported in part by NIH GM54099 (L.S.S.), NIH GM 058827 (P.A.R.), NIH 2 T32 GM008720 (A.B.C.), NIH T32 CA09594 (T.W.L.) and NIH T32 CA09503 (C.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phoebe A Rice.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Representative electron density. (PDF 340 kb)

Supplementary Figure 2

Anomalous electron density. (PDF 98 kb)

Supplementary Figure 3

Early electron density. (PDF 222 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conway, A., Lynch, T., Zhang, Y. et al. Crystal structure of a Rad51 filament. Nat Struct Mol Biol 11, 791–796 (2004). https://doi.org/10.1038/nsmb795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing