Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A unique catalytic mechanism for UDP-galactopyranose mutase

Abstract

The flavoenzyme uridine 5′-diphosphate (UDP)-galactopyranose mutase (UGM) catalyzes the interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf). The latter is an essential precursor to the cell wall arabinogalactan of Mycobacterium tuberculosis. The catalytic mechanism for this enzyme had not been elucidated. Here, we provide evidence for a mechanism in which the flavin cofactor assumes a new role. Specifically, the N5 of the reduced anionic flavin cofactor captures the anomeric position of the galactose residue with release of UDP. Interconversion of the isomers occurs via a flavin-derived iminium ion. To trap this putative intermediate, we treated UGM with radiolabeled UDP-Galp and sodium cyanoborohydride; a radiolabeled flavin-galactose adduct was obtained. Ultraviolet-visible spectroscopy and mass spectrometry indicate that this product is an N5-alkyl flavin. We anticipate that the clarification of the catalytic mechanism for UGM will facilitate the development of anti-mycobacterial agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The reaction catalyzed by UGM.
Figure 2: UV-visible difference spectra for titration of UGM with UDP-Galp highlighting the critical region.
Figure 3: Treatment of UGM with UDP-Galp-6-[3H] in the presence of NaCNBH3.
Figure 4: Spectroscopic analysis of the products of reactions containing UGM, UDP-Galp and NaCNBH3.

Similar content being viewed by others

References

  1. Bloom, B.R. & Murray, C.J. Tuberculosis: commentary on a reemergent killer. Science 257, 1055–1064 (1992).

    Article  CAS  Google Scholar 

  2. World Health Organization. Fact Sheet No. 104 (World Health Organization, Geneva, 2002).

  3. Brennan, P. & Nikaido, H. The envelope of Mycobacteria. Annu. Rev. Biochem. 64, 29–63 (1995).

    Article  CAS  Google Scholar 

  4. Houseknecht, J.B. & Lowary, T.L. Chemistry and biology of arabinofuranosyl- and galactofuranosyl-containing polysaccharides. Curr. Opin. Chem. Biol. 5, 677–682 (2001).

    Article  CAS  Google Scholar 

  5. Lowary, T.L. D-arabinofuranosides from Mycobacteria: synthesis and conformation (reprinted from Glycochemistry: Principles, Synthesis, and Applications (eds. Wang, P.G. & Bertozzi, C.R., Marcel Dekker, New York) 133–162, 2001), J. Carbohydr. Chem. 21, 691–722 (2002).

    Google Scholar 

  6. Weston, A. et al. Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tuber. Lung Dis. 78, 123–131 (1997).

    Article  CAS  Google Scholar 

  7. Pan, F., Jackson, M., Ma, Y.F. & McNeil, M. Cell wall core galactofuran synthesis is essential for growth of Mycobacteria. J. Bacteriol. 183, 3991–3998 (2001).

    Article  CAS  Google Scholar 

  8. Pedersen, L.L. & Turco, S.J. Galactofuranose metabolism: a potential target for antimicrobial chemotherapy. Cell. Mol. Life Sci., 60, 259–266 (2003).

    Article  CAS  Google Scholar 

  9. Barlow, J.N., Girvin, M.E. & Blanchard, J.S. Positional isotope exchange catalyzed by UDP-galactopyranose mutase. J. Am. Chem. Soc. 121, 6968–6969 (1999).

    Article  CAS  Google Scholar 

  10. Zhang, Q. & Liu, H. Studies of UDP-galactopyranose mutase from Escherichia coli: an unusual role for reduced FAD in its catalysis. J. Am. Chem. Soc. 122, 9065–9070 (2000).

    Article  CAS  Google Scholar 

  11. Stevenson, G. et al. Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J. Bacteriol. 176, 4144–4156 (1994).

    Article  CAS  Google Scholar 

  12. Massey, V. The chemical and biological versatility of riboflavin. Biochem. Soc. Trans. 28, 283–296 (2000).

    Article  CAS  Google Scholar 

  13. Ghisla, S. & Massey, V. Mechanisms of flavoprotein-catalyzed reactions. Eur. J. Biochem. 181, 1–17 (1989).

    Article  CAS  Google Scholar 

  14. Sanders, D.A.R. et al. UDP-galactopyranose mutase has a novel structure and mechanism. Nat. Struct. Biol. 8, 858–863 (2001).

    Article  CAS  Google Scholar 

  15. Klopprogge, K. & Schmitz, R.A. NifL of Klebsiella pneumoniae: redox characterization in relation to the nitrogen source. Biochim. Biophys. Acta. 1431, 462–470 (1999).

    Article  CAS  Google Scholar 

  16. Chang, Y.Y. & Cronan, J.E. Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway. J. Bacteriol. 170, 3937–3945 (1988).

    Article  CAS  Google Scholar 

  17. Chipman, D., Barak, Z. & Schloss, J.V. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim. Biophys. Acta 1385, 401–419 (1998).

    Article  CAS  Google Scholar 

  18. Huang, Z., Zhang, Q. & Liu, H. Reconstitution of UDP-galactopyranose mutase with 1-deaza-FAD and 5-deaza-FAD: analysis and mechanistic implications. Bioorg. Chem. 31, 494–502 (2003).

    Article  CAS  Google Scholar 

  19. Barlow, J.N. & Blanchard, J.S. Enzymatic synthesis of UDP-(3-deoxy-3-fluoro)-D-galactose and UDP-(2-deoxy-2-fluoro)-D-galactose and substrate activity with UDP-galactopyranose mutase. Carbohydr. Res. 328, 473–480 (2000).

    Article  CAS  Google Scholar 

  20. Fullerton, S.W.B et al. Potentiometric analysis of UDP-galactopyranose mutase: stabilization of the flavosemiquinone by substrate. Biochemistry 42, 2104–2109 (2003).

    Article  CAS  Google Scholar 

  21. Schwarz, H.A. & Dodson, R.W. Reduction potentials of CO2 and the alcohol radicals. J. Phys. Chem. 93, 409–414 (1989).

    Article  CAS  Google Scholar 

  22. Fritz, G. et al. Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-Å resolution. Proc. Natl. Acad. Sci. USA 99, 1836–1841 (2002).

    Article  CAS  Google Scholar 

  23. Ghisla, S. & Massey, V. New flavins for old: artificial flavins as active site probes of flavoproteins. Biochem. J. 239, 1–12 (1986).

    Article  CAS  Google Scholar 

  24. Williams, R.F. & Bruice, T.C. The kinetics and mechanism of 1,5-dihydroflavin reduction of carbonyl compounds and flavin oxidation of alcohols. J. Am. Chem. Soc. 98, 7752–7768 (1976).

    Article  CAS  Google Scholar 

  25. Kemal, C. & Bruice, T.C. The chemistry of an N5-methyl-1,5-dihydroflavin and its aminium cation radical. J. Am. Chem. Soc. 98, 3955–3964 (1976).

    Article  CAS  Google Scholar 

  26. Hemmerich, P., Ghisla, S., Hartman, U. & Muller, F. In Flavins and Flavoproteins (ed. Kamin, H.) 83–105 (University Park Press, Durham, North Carolina, USA, 1969).

    Google Scholar 

  27. Porter, D.J.T., Voet, J.G. & Bright, H.J. Direct evidence for carbanions and covalent N5-flavine-carbanion adducts as catalytic intermediates in the oxidation of nitroethane by D-amino acid oxidase. J. Biol. Chem. 248, 4400–4416 (1973).

    CAS  PubMed  Google Scholar 

  28. Williams, R.F., Shinkai, S.S. & Bruice, T.C. Kinetics and mechanisms of the 1,5-dihydroflavin reduction of carbonyl compounds and the flavin oxidation of alcohols. J. Am. Chem. Soc. 99, 921–931 (1977).

    Article  CAS  Google Scholar 

  29. Edwards, J.O. & Pearson, R.G. The factors determining nucleophilic reactivities. J. Am. Chem. Soc. 84, 16–24 (1962).

    Article  CAS  Google Scholar 

  30. Hoz, S. & Buncel, E. The α-effect—a critical examination of the phenomenon and its origin. Israel J. Chem. 26, 313–319 (1985).

    Article  CAS  Google Scholar 

  31. Lee, Y.T. & Fisher, J.F. A mechanistic study of the dihydroflavin reductive cleavage of the dihydroflavin-tetrahydronaphthalene epoxide adducts. Bioorg. Chem. 28, 163–175 (2000).

    Article  CAS  Google Scholar 

  32. Kallen, R.G. & Jencks, W.P. The mechanism of the condensation of formaldehyde with tetrahydrofolic acid. J. Biol. Chem. 241, 5851–5863 (1966).

    CAS  PubMed  Google Scholar 

  33. Matthews, R.G. Are the redox properties of tetrahydrofolate cofactors utilized in folate-dependent reactions? Fed. Proc. 41, 2600–2604 (1982).

    CAS  PubMed  Google Scholar 

  34. Walsh, C. Flavin coenzymes: at the crossroads of biological redox chemistry. Acc. Chem. Res. 13, 148–155 (1980).

    Article  CAS  Google Scholar 

  35. Fitzpatrick, P.F. Substrate dehydrogenation by flavoproteins. Acc. Chem. Res. 34, 299–307 (2001).

    Article  CAS  Google Scholar 

  36. Marlow, A.L. & Kiessling, L.L. Improved chemical synthesis of UDP-galactofuranose. Org. Lett. 3, 2517–2519 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge R. Raines, P. Ludden (University of Wisconsin Madison) and the W. M. Keck Center for use of equipment. We thank R. Raines, A.Eschenmoser, W. Cleland, G. Reed, M. Wolfe, M. Vestling, and R. Derda for helpful conversations. This research was supported by the US National Science Foundation (CHE9357093), the US National Institutes of Health (NIH) (GM49975) and the Mizutani Foundation for Glycoscience. M.S.H., E.E.C. and T.D.G. were supported by the NIH Biotechnology Training Program (GM 08349). M.S.H. was supported by an NIH predoctoral fellowship (GM 18750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura L Kiessling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltero-Higgin, M., Carlson, E., Gruber, T. et al. A unique catalytic mechanism for UDP-galactopyranose mutase. Nat Struct Mol Biol 11, 539–543 (2004). https://doi.org/10.1038/nsmb772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing