Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transition states for protein folding have native topologies despite high structural variability

Abstract

We present a structural analysis of the folding transition states of three SH3 domains. Our results reveal that the secondary structure is not yet fully formed at this stage of folding and that the solvent is only partially excluded from the interior of the protein. Comparison of the members of the transition state ensemble with a database of native folds shows that, despite substantial local variability, the transition state structures can all be classified as having the topology characteristic of an SH3 domain. Our results suggest a mechanism for folding in which the formation of a network of interactions among a subset of hydrophobic residues ensures that the native topology is generated. Such a mechanism enables high fidelity in folding while minimizing the need to establish a large number of specific interactions in the conformational search.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and sequence of the SH3 domains used in this study.
Figure 2: Three representations of the TSE of src SH3.
Figure 3: Transition state ensembles.
Figure 4: Structural classification of transition state structures using a distance matrix alignment to the SCOP domain database22.
Figure 5: Solvent accessibility and secondary structure in the TSE of src SH3.
Figure 6: Interaction network in the native and transition states.
Figure 7: Key network of interactions in the transition state for folding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Dobson, C.M. & Karplus, M. The fundamentals of protein folding: Bringing together theory and experiment. Curr. Opin. Struct. Biol. 9, 92–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Daggett, V. & Fersht, A.R. Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28, 18–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Vendruscolo, M. & Paci, E. Protein folding: Bringing theory and experiment closer together. Curr. Opin. Struct. Biol. 13, 82–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Jackson, S.E. How do small single-domain proteins fold? Fold. Des. 3, R81–R91 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Grantcharova, V.P., Alm, E.J., Baker, D. & Horwich, A.L. Mechanisms of protein folding. Curr. Opin. Struct. Biol. 11, 70–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Matouschek, A., Kellis, J.T., Serrano, L. & Fersht, A.R. Mapping the transition state and pathway of protein folding by protein engineering. Nature 340, 122–126 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Vendruscolo, M., Paci, E., Dobson, C.M. & Karplus, M. Three key residues form a critical contact network in a protein folding transition state. Nature 409, 641–645 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Paci, E., Vendruscolo, M., Dobson, C.M. & Karplus, M. Determination of a transition state at atomic resolution from protein engineering data. J. Mol. Biol. 324, 151–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Martinez, J.C., Pisabarro, M.T. & Serrano, L. Obligatory steps in protein folding and the conformational diversity of the transition state. Nat. Struct. Biol. 5, 721–729 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Riddle, D.S. et al. Experiment and theory highlight role of native state topology in SH3 folding. Nat. Struct. Biol. 6, 1016–1024 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Martinez, J.C. & Serrano, L. The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved. Nat. Struct. Biol. 6, 1010–1016 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Northey, J.G., Nardo, A.D. & Davidson, A.R. Hydrophobic core packing in the SH3 domain folding transition state. Nat. Struct. Biol. 9, 126–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Northey, J.G., Maxwell, K.L. & Davidson, A.R. Protein folding kinetics beyond the Φ value: Using multiple amino acid substitutions to investigate the structure of the SH3 domain folding transition state. J. Mol. Biol. 320, 389–402 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Larson, S.M. & Davidson, A.R. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Protein Sci. 9, 2170–2180 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ventura, S. et al. Conformational strain in the hydrophobic core and its implications for protein folding and design. Nat. Struct. Biol. 9, 485–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Fersht, A.R., Itzhaki, L.S., elMasry, N.F., Matthews, J.M. & Otzen, D.E. Single versus parallel pathways of protein folding and fractional structure in the transition state. Proc. Natl. Acad. Sci. USA 91, 10426–10429 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis, R., Dobson, C.M. & Vendruscolo, M. Determination of the structures of distinct transition state ensembles for a β-sheet peptide with parallel folding pathways. J. Chem. Phys. 117, 9510–9517 (2002).

    Article  CAS  Google Scholar 

  18. Lazaridis, T. & Karplus, M. Effective energy function for protein dynamics and thermodynamics. Proteins 35, 133–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Lindorff-Larsen, K., Paci, E., Serrano, L., Dobson, C.M. & Vendruscolo, M. Calculation of mutational free energy changes in transition states for protein folding. Biophys. J. 85, 1207–1214 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwieters, C.D. & Clore, G.M. Reweighted atomic densities to represent ensembles of NMR structures. J. Biomol. NMR 23, 221–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Gsponer, J. & Caflisch, A. Molecular dynamics simulations of protein folding from the transition state. Proc. Natl. Acad. Sci. USA 99, 6719–6724 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).

    CAS  PubMed  Google Scholar 

  23. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–602 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Brenner, S.E., Koehl, P. & Levitt, M. The ASTRAL compendium for protein structure and sequence analysis. Nucleic Acids Res. 28, 254–256 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dietmann, S., Fernandez-Fuentes, N. & Holm, L. Automatic detection of remote homology. Curr. Opin. Struct. Biol. 12, 362–367 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Debe, D.A., Carlson, M.J. & Goddard III, W.A. The topomer-sampling model of protein folding. Proc. Natl. Acad. Sci. USA 96, 2596–2601 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Makarov, D.E. & Plaxco, K.W. The topomer search model: A simple, quantitative theory of two-state protein folding kinetics. Protein Sci. 12, 17–26 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khorasanizadeh, S., Peters, I.D. & Roder, H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat. Struct. Biol. 3, 193–205 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Poso, D., Sessions, R.B., Lorch, M. & Clarke, A.R. Progressive stabilization of intermediate and transition states in protein folding reactions by introducing surface hydrophobic residues. J. Biol. Chem. 276, 35723–35726 (2000).

    Article  Google Scholar 

  30. Viguera, A.R., Vega, C. & Serrano, L. Unspecific hydrophobic stabilization of folding transition states. Proc. Natl. Acad. Sci. USA 99, 5349–5354 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheung, M.S., García, A.E. & Onuchic, J.N. Protein folding mediated by solvation: Water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl. Acad. Sci. USA 99, 685–690 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shea, J.-E., Onuchic, J.N. & Brooks 3rd., C.L. Probing the folding free energy landscape of the src-SH3 protein domain. Proc. Natl. Acad. Sci. USA 99, 16064–16068 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo, Z., Brooks 3rd., C.L. & Boczko, E.M. Posttransition state desolvation of the hydrophobic core of the src-SH3 protein domain. Biophys. J. 85, 61–69 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of total static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  PubMed  Google Scholar 

  35. Müller, N. Search for a realistic view of hydrophobic effects. Acc. Chem. Res. 23, 23–28 (1990).

    Article  Google Scholar 

  36. Baldwin, R.L. & Rose, G.D. Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem. Sci. 24, 77–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Andersen, C.A.F., Palmer, A.G., Brunak, S. & Rost, B. Continuum secondary structure captures protein flexibility. Structure 10, 175–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Viguera, A.R., Jimenez, M.A., Rico, M. & Serrano, L. Conformational analysis of peptides corresponding to β-hairpins and a β-sheet that represent the entire sequence of the α-spectrin SH3 domain. J. Mol. Biol. 255, 507–521 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Gnanakaran, S. & Garcia, A.E. Folding of a highly conserved diverging turn motif from the SH3 domain. Biophys. J. 84, 1548–1562 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yi, Q., Bystroff, C., Rajagopal, P., Klevit, R.E. & Baker, D. Prediction and structural characterization of an independently folding substructure in the src SH3 domain. J. Mol. Biol. 283, 293–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Watts, D.J. & Strogatz, S.H. Collective dynamics of 'small world' networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Vendruscolo, M., Dokholyan, N.V., Paci, E. & Karplus, M. Small-world view of the amino acids that play a key role in protein folding. Phys. Rev. E 65, 061910 (2002).

    Article  CAS  Google Scholar 

  43. Grantcharova, V.P., Riddle, D.S. & Baker, D. Long-range order in the src SH3 folding transition state. Proc. Natl. Acad. Sci. USA 97, 7084–7089 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ikeda, K., Galzitskaya, O.V., Nakamura, H. & Higo, J. β-Hairpins, α-helices, and the intermediates among the secondary structures in the energy landscape of a peptide from a distal β-hairpin of SH3 domain. J. Comp. Chem. 24, 310–318 (2003).

    Article  CAS  Google Scholar 

  45. Larson, S.M., Di Nardo, A.A. & Davidson, A.R. Analysis of covariation in an SH3 domain sequence alignment: Applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. J. Mol. Biol. 303, 433–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Cobos, E.S. et al. A thermodynamic and kinetic analysis of the folding pathway of an SH3 domain entropically stabilised by a redesigned hydrophobic core. J. Mol. Biol. 328, 221–122 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Yi, Q., Rajagopal, P., Klevit, R.E. & Baker, D. Structural and kinetic characterization of the simplified SH3 domain FP1. Protein Sci. 12, 776–783 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J. Comp. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  49. Neria, E., Fischer, S. & Karplus, M. Simulation of activation free energies in molecular dynamics system. J. Chem. Phys. 105, 1902–1921 (1996).

    Article  CAS  Google Scholar 

  50. Holm, L. & Park, J. DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to M. Karplus for continuing interest and support. We thank J. Clarke, X. Salvatella, L. Serrano and J. Winther for valuable discussions, and A. Davidson and L. Serrano for sharing experimental data before publication. We are grateful to L. Serrano for providing FOLD-X, B. Rost for DSSPcont and L. Holm for DaliLite. K.L.L. is supported by the Danish Research Agency. M.V. is a Royal Society University Research Fellow. The research of C.M.D. is supported in part by a Programme Grant from the Wellcome Trust and by the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M Dobson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindorff-Larsen, K., Vendruscolo, M., Paci, E. et al. Transition states for protein folding have native topologies despite high structural variability. Nat Struct Mol Biol 11, 443–449 (2004). https://doi.org/10.1038/nsmb765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing