Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structure of a pre-catalytic human spliceosomal complex B

Abstract

Major structural changes occur in the spliceosome during its transition from the fully assembled complex B to the catalytically activated spliceosome. To understand the rearrangement, it is necessary to know the detailed three-dimensional structures of these complexes. Here, we have immunoaffinity-purified human spliceosomes (designated BΔU1) at a stage after U4/U6·U5 tri-snRNP integration but before activation, and have determined the three-dimensional structure of BΔU1 by single-particle electron cryomicroscopy at a resolution of 40 Å. The overall size of the complex is about 370 × 270 × 170 Å. The three-dimensional structure features a roughly triangular body linked to a head domain in variable orientations. The body is very similar in size and shape to the isolated U4/U6·U5 tri-snRNP. This provides initial insight into the structural organization of complex B.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron microscopy of the spliceosomal complex BΔU1.
Figure 2: Resolution of the three-dimensional reconstruction of the BΔU1 complex.
Figure 3: Determination of the absolute handedness of the BΔU1 structure by random conical tilt.
Figure 4: Surface representation of the BΔU1 complex.
Figure 5: Analysis of structural heterogeneity of the BΔU1 complex.
Figure 6: Electron microscopic visualization of the U4/U6·U5 tri-snRNP.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

References

  1. Burge, C., Tuschl, T. & Sharp, P.A. Splicing of precursors to mRNA by the spliceosome. In The RNA World (eds. Cech, T.R. & Atkins, J.F.) 525–560 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999).

    Google Scholar 

  2. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  Google Scholar 

  3. Nilsen, T.W. RNA-RNA interactions in the spliceosome: unraveling the ties that bind. Cell 78, 1–4 (1994).

    Article  CAS  Google Scholar 

  4. Kambach, C., Walke, S. & Nagai, K. Structure and assembly of the spliceosomal small nuclear ribonucleoprotein particles. Curr. Opin. Struct. Biol. 9, 222–230 (1999).

    Article  CAS  Google Scholar 

  5. Behrens, S.E., Tyc, K., Kastner, B., Reichelt, J. & Lührmann, R. Small nuclear ribonucleoprotein (RNP) U2 contains numerous additional proteins and has a bipartite RNP structure under splicing conditions. Mol. Cell. Biol. 13, 307–319 (1993).

    Article  CAS  Google Scholar 

  6. Fabrizio, P., Esser, S., Kastner, B. & Lührmann, R. Isolation of S. cerevisiae snRNPs: comparison of U1 and U4/U6·U5 to their human counterparts. Science 264, 261–265 (1994).

    Article  CAS  Google Scholar 

  7. Stark, H., Dube, P., Lührmann, R. & Kastner, B. Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 409, 539–542 (2001).

    Article  CAS  Google Scholar 

  8. Golas, M.M., Sander, B., Will, C.L., Lührmann, R. & Stark, H. Molecular architecture of the multiprotein splicing factor SF3b. Science 300, 980–984 (2003).

    Article  CAS  Google Scholar 

  9. Jurica, M.S. & Moore, M.J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).

    Article  CAS  Google Scholar 

  10. Nilsen, T.W. The spliceosome: the most complex macromolecular machine in the cell? Bioessays 25, 1147–1149 (2003).

    Article  Google Scholar 

  11. Jurica, M.S., Licklider, L.J., Gygi, S.R., Grigorieff, N. & Moore, M.J. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8, 426–439 (2002).

    Article  CAS  Google Scholar 

  12. Makarov, E.M. et al. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298, 2205–2208 (2002).

    Article  CAS  Google Scholar 

  13. Chen, C.H. et al. Functional and physical interactions between components of the Prp19p-associated complex. Nucleic Acids Res. 30, 1029–1037 (2002).

    Article  CAS  Google Scholar 

  14. Ohi, M.D. & Gould, K.L. Characterization of interactions among the Cef1p–Prp19p-associated splicing complex. RNA 8, 798–815 (2002).

    Article  CAS  Google Scholar 

  15. Ajuh, P. et al. Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J. 19, 6569–6581 (2000).

    Article  CAS  Google Scholar 

  16. Makarova, O.V., Makarov, E.M., Liu, S., Vornlocher, H.P. & Lührmann, R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6·U5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 21, 1148–1157 (2002).

    Article  CAS  Google Scholar 

  17. van Heel, M. et al. Single-particle electron cryomicroscopy: towards atomic resolution. Q. Rev. Biophys. 33, 307–369 (2000).

    Article  CAS  Google Scholar 

  18. van Heel, M. Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111–123 (1987).

    Article  CAS  Google Scholar 

  19. Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik 73, 146–156 (1986).

    Google Scholar 

  20. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).

    Article  CAS  Google Scholar 

  21. Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic Press, New York, 1996).

    Google Scholar 

  22. Walz, J. et al. 26S proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol. 121, 19–29 (1998).

    Article  CAS  Google Scholar 

  23. Ares, M. Jr. & Weiser, B. Rearrangement of snRNA structure during assembly and function of the spliceosome. Prog. Nucleic. Acid. Res. Mol. Biol. 50, 131–159 (1995).

    Article  CAS  Google Scholar 

  24. Perriman, R., Barta, I., Voeltz, G.K., Abelson, J. & Ares, M. Jr. ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA. Proc. Natl. Acad. Sci. USA 100, 13857–13862 (2003).

    Article  CAS  Google Scholar 

  25. Reed, R. Mechanisms of fidelity in pre-mRNA splicing. Curr. Opin. Cell Biol. 12, 340–345 (2000).

    Article  CAS  Google Scholar 

  26. Zhou, Z., Sim, J., Griffith, J. & Reed, R. Purification and electron microscopic visualization of functional human spliceosomes. Proc. Natl. Acad. Sci. USA 99, 12203–12207 (2002).

    Article  CAS  Google Scholar 

  27. Kastner, B. & Lührmann, R. Electron microscopy of U1 small nuclear ribonucleoprotein particles: shape of the particle and position of the 5′ RNA terminus. EMBO J. 8, 277–286 (1989).

    Article  CAS  Google Scholar 

  28. Dube, P., Tavares, P., Lurz, R. & van Heel, M. The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J. 12, 1303–1309 (1993).

    Article  CAS  Google Scholar 

  29. van Heel, M. & Frank, J. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6, 187–194 (1981).

    CAS  PubMed  Google Scholar 

  30. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  Google Scholar 

  31. Chalikian, T.V. Volumetric properties of proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 207–235 (2003).

    Article  CAS  Google Scholar 

  32. Jurica, M.S., Sousa, D., Moore, M.J., & Grigorieff, N. Three-dimensional structure of C complex spliceosomes by electron microscopy. Nat. Struct. Mol. Biol. 11, 265–269 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Kempkes and H. Kohansal for excellent technical assistance and the Bioverfahrenstechnik division of the Gesellschaft für Biotechnologische Forschung (GBF) in Braunschweig for large-scale HeLa cell cultivation. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Lu294/12–1), the Bundesministerium für Bildung und Forschug (BMBF) (031U215B) and the Fonds der Chemischen Industrie to R.L. and a grant from BMBF (031U215B) to H.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reinhard Lührmann or Holger Stark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehringer, D., Makarov, E., Sander, B. et al. Three-dimensional structure of a pre-catalytic human spliceosomal complex B. Nat Struct Mol Biol 11, 463–468 (2004). https://doi.org/10.1038/nsmb761

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing