Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster

Abstract

In yeast cells, the THO complex has been implicated in mitotic recombination, transcription elongation and mRNA nuclear export. The stable core of THO consists of Tho2p, Hpr1p, Mft1p and Thp2p. Whether a complex with similar functions assembles in metazoa has not yet been established. Here we report that Drosophila melanogaster THO consists of THO2, HPR1 and three proteins, THOC5–THOC7, which have no orthologs in budding yeast. Gene expression profiling in cells depleted of THO components revealed that <20% of the transcriptome was regulated by THO. Nonetheless, export of heat-shock mRNAs under heat stress was strictly dependent on THO function. Notably, 8% of upregulated genes encode proteins involved in DNA repair. Thus, although THO function seems to be conserved, the vast majority of mRNAs are transcribed and exported independently of THO in D. melanogaster.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification of the stable core of the D. melanogaster THO complex.
Figure 2: The THO complex is required for cell proliferation.
Figure 3: Depletion of both THO2 and HPR1 causes the accumulation of poly(A)+ RNA in the nucleus.
Figure 4: Inhibition of the heat-shock response in THO-depleted cells.
Figure 5: The THO complex is required for the export of heat-shock mRNAs.
Figure 6: Depletion of both THO2 and HPR1 affects the expression of <20% of the D. melanogaster transcriptome.
Figure 7: Potential mRNA export substrates of THO.
Figure 8: A small set of mRNAs show similar expression profiles in cells depleted of NXF1, UAP56 or THO components.
Figure 9: Comparison of mRNA expression profiles in cells depleted of NXF1, UAP56 or THO components.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Chávez, S. et al. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 19, 5824–5834 (2000).

    Article  Google Scholar 

  2. Jimeno, S., Rondón, A.G., Luna, R. & Aguilera, A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 21, 3526–3535 (2002).

    Article  CAS  Google Scholar 

  3. Strässer, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002).

    Article  Google Scholar 

  4. Libri, D. et al. Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol. Cell. Biol. 22, 8254–8266 (2002).

    Article  CAS  Google Scholar 

  5. Piruat, J.I. & Aguilera, A. A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J. 17, 4859–4872 (1998).

    Article  CAS  Google Scholar 

  6. Rondón, A.G., Jimeno, S., García-Rubio, M. & Aguilera, A. Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J. Biol. Chem. 278, 39037–39043 (2003).

    Article  Google Scholar 

  7. Schneiter, R. et al. The Saccharomyces cerevisiae hyper-recombination mutant hpr1Δ is synthetically lethal with two conditional alleles of the acetyl coenzyme A carboxylase gene and causes a defect in nuclear export of polyadenylated RNA. Mol. Cell. Biol. 19, 3415–3422 (1999).

    Article  CAS  Google Scholar 

  8. West, R.W. Jr., Kruger, B., Thomas, S., Ma, J. & Milgrom, E. RLR1 (THO2), required for expressing lacZ fusions in yeast, is conserved from yeast to humans and is a suppressor of SIN4. Gene 243, 195–205 (2000).

    Article  CAS  Google Scholar 

  9. Chang, M. et al. A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling. Mol. Cell. Biol. 19, 1056–1067 (1999).

    Article  CAS  Google Scholar 

  10. Fan, H.Y., Merker, R.J. & Klein, H.L. High-copy-number expression of Sub2p, a member of the RNA helicase superfamily, suppresses hpr1-mediated genomic instability. Mol. Cell. Biol. 21, 5459–5470 (2001).

    Article  CAS  Google Scholar 

  11. Zenklusen, D., Vinciguerra, P., Wyss, J.C. & Stutz, F. Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol. Cell. Biol. 22, 8241–8253 (2002).

    Article  CAS  Google Scholar 

  12. Stutz, F. et al. REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 6, 638–650 (2000).

    Article  CAS  Google Scholar 

  13. Stutz, F. & Izaurralde, E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 13, 319–327 (2003).

    Article  CAS  Google Scholar 

  14. Strässer, K. & Hurt, E. Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J. 19, 410–420 (2000).

    Article  Google Scholar 

  15. Zenklusen, D., Vinciguerra, P., Strahm, Y. & Stutz, F. The yeast hnRNP-like proteins Yra1p and Yra2p participate in mRNA export through interaction with Mex67p. Mol. Cell. Biol. 13, 4219–4232 (2001).

    Article  Google Scholar 

  16. Strässer, K. & Hurt, E. Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 413, 648–652 (2001).

    Article  Google Scholar 

  17. Lei, E.P. et al. Messenger RNAs are recruited for nuclear export during transcription. Genes Dev. 15, 1771–1782 (2001).

    Article  CAS  Google Scholar 

  18. Lei, E.P. & Silver, P.A. Intron status and 3′-end formation control cotranscriptional export of mRNA. Genes Dev. 16, 2761–2766 (2002).

    Article  CAS  Google Scholar 

  19. Jensen, T.H., Dower, K., Libri, D. & Rosbash, M. Early formation of mRNP: license for export or quality control? Mol. Cell 11, 1129–1138 (2003).

    Article  CAS  Google Scholar 

  20. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA-RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    Article  CAS  Google Scholar 

  21. Zhou, Z., Licklider, L.J., Gygi, S.P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002).

    Article  CAS  Google Scholar 

  22. Herold, A., Teixeira, L. & Izaurralde, E. Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBO J. 22, 2472–2483 (2003).

    Article  CAS  Google Scholar 

  23. Gatfield, D. et al. The DExH/D-box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr. Biol. 11, 1716–1721 (2001).

    Article  CAS  Google Scholar 

  24. Gatfield, D. & Izaurralde, E. REF1/Aly and the additional exon junction complex proteins are dispensable for nuclear mRNA export. J. Cell Biol. 159, 579–588 (2002).

    Article  CAS  Google Scholar 

  25. Longman, D., Johnstone, I.L. & Caceres, J.F. The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans. RNA 9, 881–891 (2003).

    Article  CAS  Google Scholar 

  26. MacMorris, M., Brocker, C. & Blumenthal, T. UAP56 levels affect viability and mRNA export in Caenorhabditis elegans. RNA 9, 847–857 (2003).

    Article  CAS  Google Scholar 

  27. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  28. Echalier, G. Drosophila Cells in Culture (Academic Press, San Diego, 1997).

    Google Scholar 

  29. Yost, H.J. & Lindquist, S. RNA splicing is interrupted by heat-shock and is rescued by heat-shock protein synthesis. Cell 45, 185–193 (1986).

    Article  CAS  Google Scholar 

  30. Chávez, S., Garcia-Rubio, M., Prado, F. & Aguilera, A. Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 7054–7064 (2001).

    Article  Google Scholar 

  31. Aguilera, A. The connection between transcription and genomic instability. EMBO J. 21, 195–201 (2002).

    Article  CAS  Google Scholar 

  32. Weber, C.H. & Vincenz, C. The death domain superfamily: a tale of two interfaces? Trends Biochem. Sci. 26, 475–481 (2001).

    Article  CAS  Google Scholar 

  33. Fulop, V. & Jones, D.T. β-propellers: structural rigidity and functional diversity. Curr. Opin. Struct. Biol. 9, 715–721 (1999).

    Article  CAS  Google Scholar 

  34. Herold, A., Klimenko, T. & Izaurralde, E. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA 7, 1768–1780 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Le Hir, H., Gatfield, D., Braun, I.C., Forler, D. & Izaurralde, E. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep. 2, 1119–1124 (2001).

    Article  CAS  Google Scholar 

  36. Nott, A., Le Hir, H. & Moore, M.J. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18, 210–222 (2004).

    Article  CAS  Google Scholar 

  37. Wiegand, H.L., Lu, S. & Cullen, B.R. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc. Natl. Acad. Sci. USA 100, 11327–11332 (2003).

    Article  CAS  Google Scholar 

  38. Forler, D. et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol. 21, 89–92 (2003).

    Article  CAS  Google Scholar 

  39. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  Google Scholar 

  40. Wilm, M., Neubauer, G. & Mann, M. Parent ion scans of unseparated peptide mixtures. Anal. Chem. 68, 527–533 (1996).

    Article  CAS  Google Scholar 

  41. Letunic, I. et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32, D142–144 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Gene Core Facility at European Molecular Biology Laboratory for performing the array hybridizations, L. Juhl-Jensen for help with the annotation of D. melanogaster genes, L. Steinmetz for helpful discussions and D. Thomas for comments on the manuscript. This study was supported by the Human Frontier Science Program Organization (HFSPO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Izaurralde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehwinkel, J., Herold, A., Gari, K. et al. Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat Struct Mol Biol 11, 558–566 (2004). https://doi.org/10.1038/nsmb759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing