Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p27 binds cyclin–CDK complexes through a sequential mechanism involving binding-induced protein folding

Abstract

p27 controls cell proliferation by binding and regulating nuclear cyclin-dependent kinases (CDKs). In addition, p27 interacts with other nuclear and cytoplasmic targets and has diverse biological functions. We seek to understand how the structural and dynamic properties of p27 mediate its several functions. We show that, despite showing disorder before binding its targets, p27 has nascent secondary structure that may have a function in molecular recognition. Binding to Cdk2–cyclin A is accompanied by p27 folding, and kinetic data suggest a sequential mechanism that is initiated by binding to cyclin A. p27 regulates CDK–cyclin complexes involved directly in cell cycle control and does not interact with other closely related CDKs. We show that p27-cyclin interactions are an important determinant of this specificity and propose that the homologous cell cycle regulators p21 and p57 function by a similar sequential, folding-on-binding mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solution structure and dynamics of free p27-KID.
Figure 2: p27-KID binds Cdk2–cyclin A through a sequential mechanism involving extensive folding of p27-KID.
Figure 3: The molecular basis of p27 specificity for cell cycle CDKs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hengst, L., Dulic, V., Slingerland, J.M., Lees, E. & Reed, S.I. A cell cycle–regulated inhibitor of cyclin-dependent kinases. Proc. Natl. Acad. Sci. USA 91, 5291–5295 (1994).

    Article  CAS  Google Scholar 

  2. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).

    Article  CAS  Google Scholar 

  3. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin–Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

    Article  CAS  Google Scholar 

  4. Gu, Y., Turck, C.W. & Morgan, D.O. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366, 707–710 (1993).

    Article  CAS  Google Scholar 

  5. El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  6. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K. & Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  Google Scholar 

  7. Xiong, Y. et al. p21 is a universal inhibitor of cyclin kinases. Nature 366, 701–704 (1993).

    Article  CAS  Google Scholar 

  8. Noda, A., Ning, Y., Venable, S.F., Pereira-Smith, O.M. & Smith, J.R. Cloning of senescent cell–derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 211, 90–98 (1994).

    Article  CAS  Google Scholar 

  9. Morgan, D.O. Principles of CDK regulation. Nature 374, 131–134 (1995).

    Article  CAS  Google Scholar 

  10. Lee, M.H., Reynisdóttir, I. & Massagué, J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639–649 (1995).

    Article  CAS  Google Scholar 

  11. Matsuoka, S. et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650–662 (1995).

    Article  CAS  Google Scholar 

  12. Harper, J.W. et al. Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell 6, 387–400 (1995).

    Article  CAS  Google Scholar 

  13. Baus, F., Gire, V., Fisher, D., Piette, J. & Dulic, V. Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J. 22, 3992–4002 (2003).

    Article  CAS  Google Scholar 

  14. van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054 (1993).

    Article  CAS  Google Scholar 

  15. Morgan, D.O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    Article  CAS  Google Scholar 

  16. Kriwacki, R.W., Hengst, L., Tennant, L., Reed, S.I. & Wright, P.E. Structural studies of p21(waf1/cip1/sdi1) in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA 93, 11504–11509 (1996).

    Article  CAS  Google Scholar 

  17. Bienkiewicz, E.A., Adkins, J.N. & Lumb, K.J. Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). Biochemistry 41, 752–759 (2002).

    Article  CAS  Google Scholar 

  18. Russo, A.A., Jeffrey, P.D., Patten, A.K., Massague, J. & Pavletich, N.P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A–Cdk2 complex. Nature 382, 325–331 (1996).

    Article  CAS  Google Scholar 

  19. Wright, P.E. & Dyson, H.J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999).

    Article  CAS  Google Scholar 

  20. Dunker, A.K. & Obradovic, Z. The protein trinity—linking function and disorder. Nat. Biotechnol. 19, 805–806 (2001).

    Article  CAS  Google Scholar 

  21. Adkins, J.N. & Lumb, K.J. Intrinsic structural disorder and sequence features of the cell cycle inhibitor p57Kip2. Proteins 46, 1–7 (2002).

    Article  CAS  Google Scholar 

  22. Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533 (2002).

    Article  CAS  Google Scholar 

  23. Schwarzinger, S. et al. Sequence-dependent correction of random coil NMR chemical shifts. J. Am. Chem. Soc. 123, 2970–2978 (2001).

    Article  CAS  Google Scholar 

  24. Wishart, D.S. & Sykes, B.D. Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363–392 (1994).

    Article  CAS  Google Scholar 

  25. Kay, L.E. Protein dynamics from NMR. Nat. Struct. Biol. 5 (Suppl.), 513–517 (1998).

    Article  CAS  Google Scholar 

  26. Spolar, R.S. & Record, M.T.J. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994).

    Article  CAS  Google Scholar 

  27. Pavletich, N.P. Mechanisms of cyclin-dependent kinase regulation: Structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287, 821–828 (1999).

    Article  CAS  Google Scholar 

  28. Jeffrey, P.D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA–CDK2 complex. Nature 376, 313–320 (1995).

    Article  CAS  Google Scholar 

  29. Koshland, D.E.J. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44, 98–104 (1958).

    Article  CAS  Google Scholar 

  30. Schulman, B.A., Lindstrom, D.L. & Harlow, E. Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc. Natl. Acad. Sci. USA 95, 10453–10458 (1998).

    Article  CAS  Google Scholar 

  31. Brown, N.R., Noble, M.E., Endicott, J.A. & Johnson, L.N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1, 438–443 (1999).

    Article  CAS  Google Scholar 

  32. Kim, K.K., Chamberlin, H.M., Morgan, D.O. & Kim, S.H. Three-dimensional structure of human cyclin H, a positive regulator of the CDK-activating kinase. Nat. Struct. Biol. 3, 849–855 (1996).

    Article  CAS  Google Scholar 

  33. Tarricone, C. et al. Structure and regulation of the CDK5–p25nck5a complex. Mol. Cell 8, 657–669 (2001).

    Article  CAS  Google Scholar 

  34. Tanaka, H. et al. Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity. J. Cell Biol. 158, 321–329 (2002).

    Article  CAS  Google Scholar 

  35. Huang, S. et al. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol. Cell 11, 1491–1501 (2003).

    Article  CAS  Google Scholar 

  36. Shim, J., Lee, H., Park, J., Kim, H. & Choi, E.J. A non-enzymatic p21 protein inhibitor of stress-activated protein kinases. Nature 381, 804–806 (1996).

    Article  CAS  Google Scholar 

  37. Suzuki, A., Tsutomi, Y., Akahane, K., Araki, T. & Miura, M. Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 17, 931–939 (1998).

    Article  CAS  Google Scholar 

  38. Suzuki, A., Tsutomi, Y., Miura, M. & Akahane, K. Caspase 3 inactivation to suppress Fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21. Oncogene 18, 1239–1244 (1999).

    Article  CAS  Google Scholar 

  39. Suzuki, A. et al. Procaspase 3/p21 complex formation to resist Fas-mediated cell death is initiated as a result of the phosphorylation of p21 by protein kinase A. Cell Death Differ. 7, 721–728 (2000).

    Article  CAS  Google Scholar 

  40. Fujita, N., Sato, S., Katayama, K., Tsuruo, T. Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J. Biol. Chem. 277, 28706–28713 (2002).

    Article  CAS  Google Scholar 

  41. Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  42. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  43. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  Google Scholar 

  44. Neidhardt, F.C., Bloch, P.L. & Smith, D.F. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamazaki, T. et al. An HNCA pulse scheme for the backbone assignment of 15N, 13C, 2H-labeled proteins: application to a 37-kDa Trp repressor–DNA complex. J. Am. Chem. Soc. 116, 6464–6465 (1994).

    Article  CAS  Google Scholar 

  46. Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. & Kay, L.E. A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655–11666 (1994).

    Article  CAS  Google Scholar 

  47. Delaglio, F. et al. NMR Pipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  48. Cavanagh, J., Fairbrother, W.J., Palmer, A.G. III & Skelton, N.J. Protein NMR Spectroscopy (Academic, New York, 1996).

    Google Scholar 

  49. Morton, T.A. & Myszka, D.G. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Methods Enzymol. 295, 268–294 (1998).

    Article  CAS  Google Scholar 

  50. Rost, B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 266, 525–539 (1996).

    Article  CAS  Google Scholar 

  51. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  52. Kriwacki, R.W., Wu, J., Siuzdak, G. & Wright, P.E. Probing protein/protein interactions with mass spectrometry and isotopic labeling: analysis of the p21/Cdk2 complex. J. Am. Chem. Soc. 118, 5320–5321 (1996).

    Article  CAS  Google Scholar 

  53. Kriwacki, R.W., Wu, J., Tennant, L., Wright, P.E. & Siuzdak, G. Probing protein structure using biochemical and biophysical methods. Proteolysis, matrix-assisted laser desorption/ionization mass spectrometry, high-performance liquid chromatography and size-exclusion chromatography of p21Waf1/Cip1/Sdi1. J. Chromatogr. A 777, 23–30 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Zhang and M. Stewart for assistance with NMR experiments, Y. Wang for assistance with protein production, C. Ross for computer support, P. Bowman for assistance with p27 structure figures and movie, G. Siuzdak, B. Bothner, C. Galea and T. Record for critically reading the manuscript and N. Pavletich for providing a cyclin A expression plasmid. R. Muhandiram and L. Kay are acknowledged for providing Varian NMR pulse sequences. The authors acknowledge support from the American Lebanese Syrian Associated Charities (ALSAC), the US National Cancer Institute (P30 CA 21765 and RO1 CA 82491), and the US National Center for Research Resources (S10 RR014675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W Kriwacki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacy, E., Filippov, I., Lewis, W. et al. p27 binds cyclin–CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat Struct Mol Biol 11, 358–364 (2004). https://doi.org/10.1038/nsmb746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing