Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNase III enzymes and the initiation of gene silencing

Abstract

Our understanding of RNA interference has been enhanced by new data concerning RNase III molecules. The role of Dicer has previously been established in RNAi as the originator of 22-mers characteristic of silencing phenomena. Recently, a related RNAse III enzyme, Drosha, has surfaced as another component of the RNAi pathway. In addition to biochemistry, protein structures have proven to be helpful in deciphering the enzymology of RNase III molecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Domain structures of class I–III RNase III proteins.
Figure 2: Models for Dicer cleavage.

References

  1. 1

    Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671–4679 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. & Hannon, G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Carmell, M.A., Xuan, Z., Zhang, M.Q. & Hannon, G.J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Ambros, V., Lee, R.C., Lavanway, A., Williams, P.T. & Jewell, D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13, 807–818 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Lai, E.C., Tomancak, P., Williams, R.W. & Rubin, G.M. Computational identification of Drosophila microRNA genes. Genome Biol. 4, R42 (2003).

    Article  Google Scholar 

  12. 12

    Lim, L.P. et al. The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B. & Bartel, D.P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Hutvagner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Lee, Y., Jeon, K., Lee, J.T., Kim, S. & Kim, V.N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Zeng, Y. & Cullen, B.R. Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Feinbaum, R. & Ambros, V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev. Biol. 210, 87–95 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Palatnik, J.F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Robertson, H.D., Webster, R.E. & Zinder, N.D. Purification and properties of ribonuclease 3 from Escherichia coli. J. Biol. Chem. 243, 82–91 (1968).

    CAS  PubMed  Google Scholar 

  24. 24

    Nicholson, A.W. The ribonuclease III family: forms and functions in RNA maturation, decay, and gene silencing. In RNAi: A Guide to Gene Silencing (ed. Hannon, G.J.) 149–174 (Cold Spring Harbor Press, Cold Spring Harbor, New York, 2003).

    Google Scholar 

  25. 25

    Filippov, V., Solovyev, V., Filippova, M. & Gill, S.S. A novel type of RNase III family proteins in eukaryotes. Gene 245, 213–221 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Wu, H.J., Xu, H., Miraglia, L.J. & Crooke, S.T. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J. Biol. Chem. 275, 36957–36965 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Fortin, K.R., Nicholson, R.H. & Nicholson, A.W. Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location. BMC Genomics 3, 26 (2002).

    Article  Google Scholar 

  28. 28

    Blencowe, B.J., Bowman, J.A.L., McCracken, S. & Rosonina, E. SR-related proteins and the processing of messenger RNA precursors. Biochem. Cell Biol. 77, 277–291 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Nykanen, A., Haley, B. & Zamore, P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Chiu, Y.L. & Rana, T.M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Basyuk, E., Suavet, F., Doglio, A., Bordonne, R. & Bertrand, E. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res. 31, 6593–6597 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Gwizdek, C. et al. Exportin-5 mediates nuclear export of minihelix-containing RNAs. J. Biol. Chem. 278, 5505–5508 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Zhang, H., Kolb, F.A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Tang, G.L., Reinhart, B.J., Bartel, D.P. & Zamore, P.D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Yan, K.S. et al. Structure and conserved RNA binding of the PAZ domain. Nature 426, 469–474 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Song, J.J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026–1032 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469 (2003).

    CAS  Article  Google Scholar 

  40. 40

    Murzin, A.G. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 12, 861–867 (1993).

    CAS  Article  Google Scholar 

  41. 41

    Theobald, D.L., Mitton-Fry, R.M. & Wuttke, D.S. Nucleic acid recognition by OB-fold proteins. Ann. Rev. Biophys. Biomol. Struct. 32, 115–133 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Theobald, D.L., Cervantes, R.B., Lundblad, V. & Wuttke, D.S. Homology among telomeric end-protection proteins. Structure 11, 1049–1050 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Schwarz, D.S., Hutvagner, G., Haley, B. & Zamore, P.D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Harborth, J. et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 13, 83–105 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Blaszczyk, J. et al. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 9, 1225–1236 (2001).

    CAS  Article  Google Scholar 

  46. 46

    Schauer, S.E., Jacobsen, S.E., Meinke, D.W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7, 487–491 (2002).

    CAS  Article  Google Scholar 

  47. 47

    Tabara, H., Yigit, E., Siomi, H. & Mello, C.C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExX-box helicase to direct RNAi in C. elegans. Cell 109, 861–871 (2002).

    CAS  Article  Google Scholar 

  48. 48

    Liu, Q.H. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    CAS  Article  Google Scholar 

  49. 49

    Parrish, S. & Fire, A. Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. RNA 7, 1397–1402 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Paddison and X. Ji for helpful discussion. We thank M. Zhou and M. Sattler for sharing their results prior to publication. We also thank L. He, D. Siolas, J. Liu, A. Denli, and L. Murchison for critical reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory J Hannon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carmell, M., Hannon, G. RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol 11, 214–218 (2004). https://doi.org/10.1038/nsmb729

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing