Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping structural differences between 30S ribosomal subunit assembly intermediates

Abstract

Under appropriate conditions, functional Escherichia coli 30S ribosomal subunits assemble in vitro from purified components. However, at low temperatures, assembly stalls, producing an intermediate (RI) that sediments at 21S and is composed of 16S ribosomal RNA (rRNA) and a subset of ribosomal proteins (r-proteins). Incubation of RI at elevated temperatures produces a particle, RI*, of similar composition but different sedimentation coefficient (26S). Once formed, RI* rapidly associates with the remaining r-proteins to produce mature 30S subunits. To understand the nature of this transition from RI to RI*, changes in the reactivity of 16S rRNA between these two states were monitored by chemical modification and primer extension analysis. Evaluation of this data using structural and biochemical information reveals that many changes are r-protein–dependent and some are clustered in functional regions, suggesting that this transition is an important step in functional 30S subunit formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro assembly of 30S ribosomal subunits.
Figure 2: 5′ domain nucleotides with altered reactivity between RI and RI*.
Figure 3: Central domain nucleotides with altered reactivity between RI and RI*.
Figure 4: 3′ domain nucleotides with altered reactivity between RI and RI*.
Figure 5: Summary of nucleotide changes between RI and RI*.
Figure 6: Sites of decreased reactivity in RI* relative to RI.
Figure 7: Sites of enhanced reactivity in RI* relative to RI.

Similar content being viewed by others

References

  1. Traub, P. & Nomura, M. Structure and function of E. coli ribosomes, V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc. Natl. Acad. Sci. USA 59, 777–784 (1968).

    Article  CAS  Google Scholar 

  2. Mizushima, S. & Nomura, M. Assembly mapping of 30S ribosomal proteins in E. coli. Nature 226, 1214–1218 (1970).

    Article  CAS  Google Scholar 

  3. Held, W.A., Mizushima, S. & Nomura, M. Reconstitution of Escherichia coli 30S ribosomal subunits from purified molecular components. J. Biol. Chem. 218, 5720–5730 (1973).

    Google Scholar 

  4. Culver, G.M. & Noller, H.F. Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins. RNA 5, 832–843 (1999).

    Article  CAS  Google Scholar 

  5. Held, W.A., Ballou, B., Mizushima, S. & Nomura, M. Assembly mapping of 30S ribosomal proteins from Escherichia coli. J. Biol. Chem. 249, 3103–3111 (1974).

    CAS  PubMed  Google Scholar 

  6. Traub, P. & Nomura, M. Structure and function of E. coli ribosomes. VI. Mechanism of assembly of 30S ribosomes studied in vitro. J. Mol. Biol. 40, 391–413 (1969).

    Article  CAS  Google Scholar 

  7. Held, W.A. & Nomura, M. Rate determining step in the reconstitution of Escherichia coli 30S ribosomal subunits. Biochemistry 12, 3273–3281 (1973).

    Article  CAS  Google Scholar 

  8. Guthrie, C., Nashimoto, H. & Nomura, M. Structure and function of E. coli ribosomes. VIII. Cold-sensitive mutants defective in ribosome assembly. Proc. Natl. Acad. Sci. USA 63, 384–391 (1969).

    Article  CAS  Google Scholar 

  9. Nashimoto, H., Held, W., Kaltschmidt, E. & Nomura, M. Structure and function of bacterial ribosomes. XII. Accumulation of 21S particles by some cold-sensitive mutants of E. coli. J. Mol. Biol. 62, 121–138 (1971).

    Article  CAS  Google Scholar 

  10. Nierhaus, K.H., Bordasch, K. & Homann, H.E. Ribosomal proteins. XLIII. In vivo assembly of Escherichia coli ribosomal proteins. J. Mol. Biol. 74, 587–597 (1973).

    Article  CAS  Google Scholar 

  11. Lindahl, L. Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes. J. Mol. Biol. 92, 15–37 (1975).

    Article  CAS  Google Scholar 

  12. Alix, J.-H. & Guerin, M.-F. Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli. Proc. Natl. Acad. Sci. USA 90, 9725–9729 (1993).

    Article  CAS  Google Scholar 

  13. Cate, J.H., Yusupov, M.M., Yusupova, G.Z., Earnest, T.N. & Noller, H.F. X-ray crystal structures of 70S ribosome functional complexes. Science 285, 2095–2104 (1999).

    Article  CAS  Google Scholar 

  14. Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

  15. Moazed, D., Van Stolk, B.J., Douthwaite, S. & Noller, H.F. Interconversion of active and inactive 30 S ribosomal subunits is accompanied by a conformational change in the decoding region of 16S rRNA. J. Mol. Biol. 191, 483–493 (1986).

    Article  CAS  Google Scholar 

  16. Merryman, C. & Noller, H.F. Footprinting and modification-interference analysis of binding sites on RNA. In RNA:Protein Interactions. A Practical Approach (ed. Smith, C.W.J.) 237–253 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  17. Powers, T. & Noller, H.F. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10, 2203–2214 (1991).

    Article  CAS  Google Scholar 

  18. Vila, A., Viril-Farley, J. & Tapprich, W.E. Pseudoknot in the central domain of small subunit ribosomal RNA is essential for translation. Proc. Natl. Acad. Sci. USA 91, 11148–11152 (1994).

    Article  CAS  Google Scholar 

  19. Poot, R.A., van den Worm, S.H., Pleij, C.W. & van Duin, J. Base complementarity in helix 2 of the central pseudoknot in 16S rRNA is essential for ribosome functioning. Nucleic Acids Res. 26, 549–553 (1998).

    Article  CAS  Google Scholar 

  20. Cannone, J.J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002).

    Article  Google Scholar 

  21. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  22. Dolan, M.A., Babin, P. & Wollenzien, P. Construction and analysis of base-paired regions of the 16S rRNA in the 30S ribosomal subunit determined by constraint satisfaction molecular modeling. J. Mol. Graph. Model. 19, 495–513 (2001).

    Article  CAS  Google Scholar 

  23. Schluenzen, F. et al. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102, 615–623 (2000).

    Article  CAS  Google Scholar 

  24. Nikulin, A. et al. Crystal structure of the S15-rRNA complex. Nat. Struct. Biol. 7, 273–277 (2000).

    Article  CAS  Google Scholar 

  25. Agalarov, S.C., Sridhar Prasad, G., Funke, P.M., Stout, C.D. & Williamson, J.R. Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain. Science 288, 107–113 (2000).

    Article  CAS  Google Scholar 

  26. Brodersen, D.E., Clemons Jr., W.M., Carter, A.P., Wimberly, B.T. & Ramakrishnan, V. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16S RNA. J. Mol. Biol. 316, 725–768 (2002).

    Article  CAS  Google Scholar 

  27. Powers, T. & Noller, H.F. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1, 194–209 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stern, S., Changchien, L.-M., Craven, G.R. & Noller, H.F. Interaction of proteins S16, S17 and S20 with 16S ribosomal RNA. J. Mol. Biol. 200, 291–299 (1988).

    Article  CAS  Google Scholar 

  29. Powers, T., Changchien, L., Craven, G. & Noller, H. Probing the assembly of the 3′ major domain of 16S ribosomal RNA. Quaternary interactions involving ribosomal proteins S7, S9 and S19. J. Mol. Biol. 200, 309–319 (1988).

    Article  CAS  Google Scholar 

  30. Powers, T., Stern, S., Changchien, L.M. & Noller, H.F. Probing the assembly of the 3′ major domain of 16S rRNA. Interactions involving ribosomal proteins S2, S3, S10, S13 and S14. J. Mol. Biol. 201, 697–716 (1988).

    Article  CAS  Google Scholar 

  31. Moazed, D. & Noller, H.F. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47, 985–994 (1986).

    Article  CAS  Google Scholar 

  32. Moazed, D. & Noller, H.F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16S rRNA. J. Mol. Biol. 211, 135–145 (1990).

    Article  CAS  Google Scholar 

  33. Yusupova, G.Z., Yusupov, M.M., Cate, J.H.D. & Noller, H.F. The path of the messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    Article  CAS  Google Scholar 

  34. Moazed, D., Samaha, R.R., Gualerzi, C. & Noller, H.F. Specific protection of 16S rRNA by translational initiation factors. J. Mol. Biol. 248, 207–210 (1995).

    CAS  PubMed  Google Scholar 

  35. Moazed, D., Stern, S. & Noller, H.F. Rapid chemical probing of conformations in 16S ribosomal RNA and 30S ribosomal subunits using primer extension. J. Mol. Biol. 187, 399–416 (1986).

    Article  CAS  Google Scholar 

  36. Culver, G.M. & Noller, H.F. In vitro reconstitution of 30S ribosomal subunits using complete set of recombinant proteins. Methods Enzymol. 318, 446–460 (2000).

    Article  CAS  Google Scholar 

  37. Culver, G.M. Assembly of the 30S ribosomal subunit. Biopolymers 68, 234–249.

  38. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  39. Brimacombe, R. The structure of ribosomal RNA: A three-dimensional jigsaw puzzle. Eur. J. Biochem. 230, 365–383 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Green, I. Jagannathan and J. Maki for critical reading of the manuscript. Additional thanks to S. Stagg and J. Hoy for assistance with figures. This work was funded by a grant from the US National Institutes of Health (to G.M.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria M Culver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, K., Culver, G. Mapping structural differences between 30S ribosomal subunit assembly intermediates. Nat Struct Mol Biol 11, 179–186 (2004). https://doi.org/10.1038/nsmb719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing