Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1

Abstract

The post-transcriptional regulation of gene expression underlies several critical developmental phenomena. In metazoa, gene products that are expressed, silenced and packaged during oogenesis govern early developmental processes prior to nascent transcription activation. Furthermore, tissue-specific alternative splicing of several transcription factors controls pattern formation and organ development. A highly conserved family of proteins containing a STAR/GSG RNA-binding domain is essential to both processes. Here, we identify the consensus STAR-binding element (SBE) required for specific mRNA recognition by GLD-1, a key regulator of Caenorhabditis elegans germline development. We have identified and verified new GLD-1 repression targets containing this sequence. The results suggest additional functions of GLD-1 in X-chromosome silencing and early embryogenesis. The SBE is present in Quaking and How mRNA targets, suggesting that STAR protein specificity is highly conserved. Similarities between the SBE and the branch-site signal indicate a possible competition mechanism for STAR/GSG regulation of splicing variants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A member of the STAR family of RNA-binding proteins regulates germline development in C. elegans.
Figure 2: Affinity and stoichiometry of GLD-1-STAR for the TGE.
Figure 3: Functional analysis of STAR subdomains.
Figure 4: Binding specificity of GLD-1-STAR.
Figure 5: Determination and analysis of the minimal RNA fragment that binds to GLD-1-STAR.
Figure 6: Novel targets of GLD-1.
Figure 7: Homology analysis of GLD-1-STAR structure.

Similar content being viewed by others

References

  1. Curtis, D., Lehmann, R. & Zamore, P.D. Translational regulation in development. Cell 81, 171–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Johnstone, O. & Lasko, P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu. Rev. Genet. 35, 365–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Wickens, M., Goodwin, E.B., Kimble, J., Strickland, S. & Hentze, M. Translational control in developmental decisions. in Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W.B. & Matthews, M.B.) 295–370 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2000).

    Google Scholar 

  4. Jan, E., Motzny, C.K., Graves, L.E. & Goodwin, E.B. The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J. 18, 258–269 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saccomanno, L. et al. The STAR protein QKI-6 is a translational repressor. Proc. Natl. Acad. Sci. USA 96, 12605–12610 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nabel-Rosen, H., Dorevitch, N., Reuveny, A. & Volk, T. The balance between two isoforms of the Drosophila RNA-binding protein How controls tendon cell differentiation. Mol. Cell 4, 573–584 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Di Fruscio, M. et al. Kep1 interacts genetically with dredd/caspase-8, and kep1 mutants alter the balance of dredd isoforms. Proc. Natl. Acad. Sci. USA 100, 1814–1819 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berglund, J.A., Chua, K., Abovich, N., Reed, R. & Rosbash, M. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell 89, 781–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Vernet, C. & Artzt, K. STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet. 13, 479–484 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, T., Damaj, B.B., Herrera, C., Lasko, P. & Richard, S. Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: role of the KH domain. Mol. Cell Biol. 17, 5707–5718 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, T. & Richard, S. Structure-function analysis of Qk1: a lethal point mutation in mouse quaking prevents homodimerization. Mol. Cell Biol. 18, 4863–4871 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berglund, J.A., Fleming, M.L. & Rosbash, M. The KH domain of the branchpoint sequence binding protein determines specificity for the pre-mRNA branchpoint sequence. RNA 4, 998–1006 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, Z. et al. Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science 294, 1098–1102 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Jones, A.R., Francis, R. & Schedl, T. GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev. Biol. 180, 165–183 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Francis, R., Maine, E. & Schedl, T. Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signaling pathway. Genetics 139, 607–630 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Francis, R., Barton, M.K., Kimble, J. & Schedl, T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139, 579–606 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuwabara, P.E. & Perry, M.D. It ain't over till it's ova: germline sex determination in C. elegans. Bioessays 23, 596–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Clifford, R. et al. FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA-binding protein and directs male sex determination in the C. elegans hermaphrodite germline. Development 127, 5265–5276 (2000).

    CAS  PubMed  Google Scholar 

  20. Crittenden, S.L. et al. A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417, 660–663 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, B. et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390, 477–484 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Jan, E., Yoon, J.W., Walterhouse, D., Iannaccone, P. & Goodwin, E.B. Conservation of the C. elegans tra-2 3′UTR translational control. EMBO J. 16, 6301–6313 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramos, A. et al. Role of dimerization in KH/RNA complexes: the example of Nova KH3. Biochemistry 41, 4193–4201 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Berglund, J.A., Abovich, N. & Rosbash, M. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev. 12, 858–867 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peled-Zehavi, H., Berglund, J.A., Rosbash, M. & Frankel, A.D. Recognition of RNA branch point sequences by the KH domain of splicing factor 1 (mammalian branch point binding protein) in a splicing factor complex. Mol. Cell Biol. 21, 5232–5241 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Recht, M.I. & Williamson, J.R. Central domain assembly: thermodynamics and kinetics of S6 and S18 binding to an S15-RNA complex. J. Mol. Biol. 313, 35–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, L., Paulsen, J., Yoo, Y., Goodwin, E.B. & Strome, S. Caenorhabditis elegans MES-3 is a target of GLD-1 and functions epigenetically in germline development. Genetics 159, 1007–1017 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fong, Y., Bender, L., Wang, W. & Strome, S. Regulation of the different chromatin states of autosomes and X chromosomes in the germline of C. elegans. Science 296, 2235–2238 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, M.H. & Schedl, T. Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev. 15, 2408–2420 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grant, B. & Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311–26 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thatcher, J.D., Fernandez, A.P., Beaster-Jones, L., Haun, C. & Okkema, P.G. The Caenorhabditis elegans peb-1 gene encodes a novel DNA-binding protein involved in morphogenesis of the pharynx, vulva, and hindgut. Dev. Biol. 229, 480–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Ashcroft, N. & Golden, A. CDC-25.1 regulates germline proliferation in Caenorhabditis elegans. Genesis 33, 1–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Capowski, E.E., Martin, P., Garvin, C. & Strome, S. Identification of grandchildless loci whose products are required for normal germline development in the nematode Caenorhabditis elegans. Genetics 129, 1061–1072 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mello, C.C. et al. The PIE-1 protein and germline specification in C. elegans embryos. Nature 382, 710–712 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Seydoux, G. et al. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382, 713–716 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Reese, K.J., Dunn, M.A., Waddle, J.A. & Seydoux, G. Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol. Cell 6, 445–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Marin, V.A. & Evans, T.C. Translational repression of a C. elegans Notch mRNA by the STAR/KH domain protein GLD-1. Development 130, 2623–2632 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Z., Zhang, Y., Li, D. & Feng, Y. Destabilization and mislocalization of myelin basic protein mRNAs in quaking dysmyelination lacking the QKI RNA-binding proteins. J. Neurosci. 20, 4944–4953 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ainger, K. et al. Transport and localization elements in myelin basic protein mRNA. J. Cell Biol. 138, 1077–87 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, J.I., Reed, R.B., Grabowski, P.J. & Artzt, K. Function of quaking in myelination: regulation of alternative splicing. Proc. Natl. Acad. Sci. USA 99, 4233–4238 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nabel-Rosen, H., Volohonsky, G., Reuveny, A., Zaidel-Bar, R. & Volk, T. Two isoforms of the Drosophila RNA-binding protein, How, act in opposing directions to regulate tendon cell differentiation. Dev. Cell 2, 183–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Zaffran, S., Astier, M., Gratecos, D. & Semeriva, M. The held out wings (how) Drosophila gene encodes a putative RNA-binding protein involved in the control of muscular and cardiac activity. Development 124, 2087–2098 (1997).

    CAS  PubMed  Google Scholar 

  43. Reddy, T.R. et al. Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nat. Med. 5, 635–642 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, Q., Taylor, S.J. & Shalloway, D. Specificity and determinants of Sam68 RNA binding. Implications for the biological function of K homology domains. J. Biol. Chem. 272, 27274–27280 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Batey, R.T. & Williamson, J.R. Interaction of the Bacillus stearothermophilus ribosomal protein S15 with 16 S rRNA: I. Defining the minimal RNA site. J. Mol. Biol. 261, 536–549 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Lehmann, M. Recht and M. Trevathan for helpful discussions and critical comments concerning this manuscript, A. Manuell and Y. Pavlova for assistance with construct preparation and S. Bergqvist for assistance with ITC experiments. We also thank the C. elegans Genetic Center for worm strains. S.P.R. was supported by a Damon Runyon Fellowship Award. This work was funded by The Skaggs Institute for Chemical Biology and by US National Institutes of Health grants to J.R.W. and E.B.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R Williamson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryder, S., Frater, L., Abramovitz, D. et al. RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1. Nat Struct Mol Biol 11, 20–28 (2004). https://doi.org/10.1038/nsmb706

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb706

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing