Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA

Abstract

Although the catalytic subunit of the Schizosaccharomyces pombe telomerase holoenzyme was identified over ten years ago, the unusual heterogeneity of its telomeric DNA made it difficult to identify its RNA component. We used a new two-step immunoprecipitation and reverse transcription–PCR technique to identify the S. pombe telomerase RNA, which we call TER1. TER1 RNA was 1,213 nucleotides long, similar in size to the Saccharomyces cerevisiae telomerase RNA, TLC1. TER1 RNA associated in vivo with the two known subunits of the S. pombe telomerase holoenzyme, Est1p and Trt1p, and neither association was dependent on the other holoenzyme component. We present a model to explain how telomerase introduces heterogeneity into S. pombe telomeres. The technique used here to identify TER1 should be generally applicable to other model organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of viability and telomeric DNA in cells lacking the candidate gene for telomerase RNA.
Figure 2: Expression of a ter1 allele with a mutated template promotes the incorporation of altered repeats into native telomeres.
Figure 3: TER1 RNA is 1,200 nt.
Figure 4: Predicted secondary structure for TER1 RNA.
Figure 5: Disruption of the TER1 template-proximal helix causes telomeric shortening and increased incorporation of the infrequently added terminal cytosine, which can be rescued by a compensatory helix restoration mutant.
Figure 6: TER1 RNA is associated with the holoenzyme components Trt1p and Est1p in vivo, but not with Pku80p.
Figure 7: Model for interaction between the S. pombe telomeric DNA and TER1 RNA and the addition of telomeric sequence.

Similar content being viewed by others

References

  1. Legassie, J.D. & Jarstfer, M.B. The unmasking of telomerase. Structure 14, 1603–1609 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Theimer, C.A. & Feigon, J. Structure and function of telomerase RNA. Curr. Opin. Struct. Biol. 16, 307–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Vega, L.R., Mateyak, M.K. & Zakian, V.A. Getting to the end: telomerase access in yeast and humans. Nat. Rev. Mol. Cell Biol. 4, 948–959 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Cooper, J.P., Nimmo, E.R., Allshire, R.C. & Cech, T.R. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Pitt, C.W., Valente, L.P., Rhodes, D. & Simonsson, T. Identification and characterization of an essential telomeric repeat binding factor in Schizosaccharomyces pombe. J. Biol. Chem., published online 7 October 2007 (doi:10.1074/jbc.M708784200).

    Article  PubMed  Google Scholar 

  6. Nakamura, T.M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Baumann, P. & Cech, T.R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Baumann, P. & Cech, T.R. Protection of telomeres by the Ku protein in fission yeast. Mol. Biol. Cell 11, 3265–3275 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zappulla, D.C. & Cech, T.R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl. Acad. Sci. USA 101, 10024–10029 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dandjinou, A.T. et al. A phylogenetically based secondary structure for the yeast telomerase RNA. Curr. Biol. 14, 1148–1158 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, J.L. & Greider, C.W. An emerging consensus for telomerase RNA structure. Proc. Natl. Acad. Sci. USA 101, 14683–14684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin, J. et al. A universal telomerase RNA core structure includes structured motifs required for binding the telomerase reverse transcriptase protein. Proc. Natl. Acad. Sci. USA 101, 14713–14718 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hiraoka, Y., Henderson, E. & Blackburn, E.H. Not so peculiar: fission yeast telomere repeats. Trends Biochem. Sci. 23, 126 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Seto, A.G., Zaug, A.J., Sobel, S.G., Wolin, S.L. & Cech, T.R. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 401, 177–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Jady, B.E., Bertrand, E. & Kiss, T. Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J. Cell Biol. 164, 647–652 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin, J.J. & Zakian, V.A. An in vitro assay for Saccharomyces telomerase requires EST1. Cell 81, 1127–1135 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Seto, A.G., Livengood, A.J., Tzfati, Y., Blackburn, E.H. & Cech, T.R. A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev. 16, 2800–2812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, J., Hidaka, K. & Futcher, B. The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA. Mol. Cell. Biol. 20, 1947–1955 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fisher, T.S., Taggart, A.K. & Zakian, V.A. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat. Struct. Mol. Biol. 11, 1198–1205 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Haering, C.H., Nakamura, T.M., Baumann, P. & Cech, T.R. Analysis of telomerase catalytic subunit mutants in vivo and in vitro in Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 97, 6367–6372 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beernink, H.T., Miller, K., Deshpande, A., Bucher, P. & Cooper, J.P. Telomere maintenance in fission yeast requires an Est1 ortholog. Curr. Biol. 13, 575–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Maxwell, E.S. & Fournier, M.J. The small nucleolar RNAs. Annu. Rev. Biochem. 64, 897–934 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Greider, C.W. & Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Shippen-Lentz, D. & Blackburn, E.H. Functional evidence for an RNA template in telomerase. Science 247, 546–552 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Hedges, S.B. The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Froussard, P. A random-PCR method (rPCR) to construct whole cDNA library from low amounts of RNA. Nucleic Acids Res. 20, 2900 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lue, N.F. & Peng, Y. Identification and characterization of a telomerase activity from Schizosaccharomyces pombe. Nucleic Acids Res. 25, 4331–4337 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakamura, T.M., Cooper, J.P. & Cech, T.R. Two modes of survival of fission yeast without telomerase. Science 282, 493–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Nimmo, E.R., Pidoux, A.L., Perry, P.E. & Allshire, R.C. Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 392, 825–828 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Croy, J.E., Podell, E.R. & Wuttke, D.S. A new model for Schizosaccharomyces pombe telomere recognition: the telomeric single-stranded DNA-binding activity of Pot11–389. J. Mol. Biol. 361, 80–93 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Teixeira, M.T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117, 323–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Sugawara, N.F. DNA Sequences at the Telomeres of the Fission Yeast S. pombe. Thesis, Harvard (1989).

    Google Scholar 

  33. Zaug, A.J., Linger, J. & Cech, T.R. Method for determining RNA 3′ ends and application to human telomerase RNA. Nucleic Acids Res. 24, 532–533 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stellwagen, A.E., Haimberger, Z.W., Veatch, J.R. & Gottschling, D.E. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 17, 2384–2395 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Livengood, A.J., Zaug, A.J. & Cech, T.R. Essential regions of Saccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol. Cell. Biol. 22, 2366–2374 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chappell, A.S. & Lundblad, V. Structural elements required for association of the Saccharomyces cerevisiae telomerase RNA with the Est2 reverse transcriptase. Mol. Cell. Biol. 24, 7720–7736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hofacker, I.L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seto, A.G. et al. A template-proximal RNA paired element contributes to Saccharomyces cerevisiae telomerase activity. RNA 9, 1323–1332 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xayaphoummine, A., Bucher, T. & Isambert, H. Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. [online] 33, W605–W610 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dandekar, T. & Tollervey, D. Mutational analysis of Schizosaccharomyces pombe U4 snRNA by plasmid exchange. Yeast 8, 647–653 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Tzfati, Y., Fulton, T.B., Roy, J. & Blackburn, E.H. Template boundary in a yeast telomerase specified by RNA structure. Science 288, 863–867 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Lundblad, V. & Szostak, J.W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633–643 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Reichenbach, P. et al. A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol. 13, 568–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Snow, B.E. et al. Functional conservation of the telomerase protein Est1p in humans. Curr. Biol. 13, 698–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Hughes, T.R., Evans, S.K., Weilbaecher, R.G. & Lundblad, V. The Est3 protein is a subunit of yeast telomerase. Curr. Biol. 10, 809–812 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Fisher, T.S. & Zakian, V.A. Ku: a multifunctional protein involved in telomere maintenance. DNA Repair (Amst.) 4, 1215–1226 (2005).

    Article  CAS  Google Scholar 

  47. Mozdy, A.D. & Cech, T.R. Low abundance of telomerase in yeast: implications for telomerase haploinsufficiency. RNA 12, 1721–1737 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rautio, J. et al. Sandwich hybridisation assay for quantitative detection of yeast RNAs in crude cell lysates. Microb. Cell Fact. [online] 2, 4 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Leonardi, J., Box, J.A., Bunch, J.T. & Baumann, P. Nat. Struct. Mol. Biol., advance online publication xxx 2007 (doi:10.1038/nsmb1343).

    Article  Google Scholar 

  50. Feldmann, H. & Winnacker, E.L. A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J. Biol. Chem. 268, 12895–12900 (1993).

    CAS  PubMed  Google Scholar 

  51. Boulton, S.J. & Jackson, S.P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819–1828 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manolis, K.G. et al. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J. 20, 210–221 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peterson, S.E. et al. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nat. Genet. 27, 64–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Singer, M.S. & Gottschling, D.E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404–409 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. McEachern, M.J. & Blackburn, E.H. Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 376, 403–409 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Kanoh, J. & Ishikawa, F. Composition and conservation of the telomeric complex. Cell. Mol. Life Sci. 60, 2295–2302 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Sugimoto, N., Nakano, M. & Nakano, S. Thermodynamics-structure relationship of single mismatches in RNA/DNA duplexes. Biochemistry 39, 11270–11281 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Sabourin, M., Tuzon, C.T., Fisher, T.S. & Zakian, V.A. A flexible protein linker improves the function of epitope-tagged proteins in Saccharomyces cerevisiae. Yeast 24, 39–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Miller, K.M. & Cooper, J.P. The telomere protein Taz1 is required to prevent and repair genomic DNA breaks. Mol. Cell 11, 303–313 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Baumann for sharing results before publication and J.B. Boulé, M. Mateyak, J. Phillips, S. Pinter, M. Sabourin, C. Tuzon and Y. Wu for critical reading of the manuscript. We thank O. Troyanskya and C. Huttenhower for computational assistance, R. Allshire (Wellcome Trust Centre for Cell Biology), P. Baumann (Stowers Institute for Medical Research), H. Lieberman (Columbia University) and M. Sipiczki (University of Debrecen) for strains, and K. Miller in J. Cooper's lab, C. Tuzon and J. Bruzik for protocols. This work was supported by US National Institutes of Health grants GM43265 and R37 GM26938 and by a US National Research Service Award to C.J.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia A Zakian.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 (PDF 507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, C., Zakian, V. Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA. Nat Struct Mol Biol 15, 34–42 (2008). https://doi.org/10.1038/nsmb1354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing