Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions

Abstract

The heterophilic synaptic adhesion molecules neuroligins and neurexins are essential for establishing and maintaining neuronal circuits by modulating the formation and maturation of synapses. The neuroligin-neurexin adhesion is Ca2+-dependent and regulated by alternative splicing. We report a structure of the complex at a resolution of 2.4 Å between the mouse neuroligin-1 (NL1) cholinesterase-like domain and the mouse neurexin-1β (NX1β) LNS (laminin, neurexin and sex hormone–binding globulin–like) domain. The structure revealed a delicate neuroligin-neurexin assembly mediated by a hydrophilic, Ca2+-mediated and solvent-supplemented interface, rendering it capable of being modulated by alternative splicing and other regulatory factors. Thermodynamic data supported a mechanism wherein splicing site B of NL1 acts by modulating a salt bridge at the edge of the NL1-NX1β interface. Mapping neuroligin mutations implicated in autism indicated that most such mutations are structurally destabilizing, supporting deficient neuroligin biosynthesis and processing as a common cause for this brain disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the NL1–NX1β complex.
Figure 2: The Ca2+ binding site in the NL1-NX1β complex.
Figure 3: The NL1-NX1β interface.
Figure 4: Alternative splice sites in the NL1–NX1β complex.
Figure 5: Autism-related neuroligin point mutations.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Craig, A.M., Graf, E.R. & Linhoff, M.W. How to build a central synapse: clues from cell culture. Trends Neurosci. 29, 8–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Chih, B., Engelman, H. & Scheiffele, P. Control of excitatory and inhibitory synapse formation by neuroligins. Science 307, 1324–1328 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Chubykin, A.A. et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54, 919–931 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W. & Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Song, J.Y., Ichtchenko, K., Sudhof, T.C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl. Acad. Sci. USA 96, 1100–1105 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Varoqueaux, F. et al. Neuroligins determine synapse maturation and function. Neuron 51, 741–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Chih, B., Afridi, S.K., Clark, L. & Scheiffele, P. Disorder-associated mutations lead to functional inactivation of neuroligins. Hum. Mol. Genet. 13, 1471–1477 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Comoletti, D. et al. The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J. Neurosci. 24, 4889–4893 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feng, J. et al. High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci. Lett. 409, 10–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 34, 27–29 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laumonnier, F. et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am. J. Hum. Genet. 74, 552–557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Szatmari, P. et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat. Genet. 39, 319–328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Talebizadeh, Z. et al. Novel splice isoforms for NLGN3 and NLGN4 with possible implications in autism. J. Med. Genet. 43, e21 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yan, J. et al. Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol. Psychiatry 10, 329–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Lise, M.F. & El-Husseini, A. The neuroligin and neurexin families: from structure to function at the synapse. Cell. Mol. Life Sci. 63, 1833–1849 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Missler, M., Hammer, R.E. & Sudhof, T.C. Neurexophilin binding to α-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. J. Biol. Chem. 273, 34716–34723 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Rudenko, G., Nguyen, T., Chelliah, Y., Sudhof, T.C. & Deisenhofer, J. The structure of the ligand-binding domain of neurexin Iβ: regulation of LNS domain function by alternative splicing. Cell 99, 93–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Comoletti, D. et al. Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1β. J. Biol. Chem. 278, 50497–50505 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Comoletti, D. et al. Gene selection, alternative splicing, and post-translational processing regulate neuroligin selectivity for β-neurexins. Biochemistry 45, 12816–12827 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Comoletti, D. et al. Synaptic arrangement of the neuroligin/β-neurexin complex revealed by X-ray and neutron scattering. Structure 15, 693–705 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen, T. & Sudhof, T.C. Binding properties of neuroligin 1 and neurexin 1β reveal function as heterophilic cell adhesion molecules. J. Biol. Chem. 272, 26032–26039 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Boucard, A.A., Chubykin, A.A., Comoletti, D., Taylor, P. & Sudhof, T.C. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to α- and β-neurexins. Neuron 48, 229–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Chih, B., Gollan, L. & Scheiffele, P. Alternative splicing controls selective trans-synaptic interactions of the neuroligin–neurexin complex. Neuron 51, 171–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Graf, E.R., Kang, Y., Hauner, A.M. & Craig, A.M. Structure function and splice site analysis of the synaptogenic activity of the neurexin-1β LNS domain. J. Neurosci. 26, 4256–4265 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ichtchenko, K. et al. Neuroligin 1: a splice site-specific ligand for β-neurexins. Cell 81, 435–443 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Ichtchenko, K., Nguyen, T. & Sudhof, T.C. Structures, alternative splicing, and neurexin binding of multiple neuroligins. J. Biol. Chem. 271, 2676–2682 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Bourne, Y., Taylor, P. & Marchot, P. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell 83, 503–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Sheckler, L.R., Henry, L., Sugita, S., Sudhof, T.C. & Rudenko, G. Crystal structure of the second LNS/LG domain from neurexin 1α: Ca2. binding and the effects of alternative splicing. J. Biol. Chem. 281, 22896–22905 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Dean, C. & Dresbach, T. Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci. 29, 21–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Meijers, R. et al. Structural basis of Dscam isoform specificity. Nature 449, 487–491 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, E., Magen, A. & Ast, G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 35, 125–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Prange, O., Wong, T.P., Gerrow, K., Wang, Y.T. & El-Husseini, A. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc. Natl. Acad. Sci. USA 101, 13915–13920 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chubykin, A.A. et al. Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism. J. Biol. Chem. 280, 22365–22374 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  40. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E.M. Silinsky for critically reading the manuscript and K.C. Garcia for encouragement. X.H. is supported by the Brain Tumor Society and US National Institutes of Health grant 1R01GM078055. The Structural Biology Facility is supported by the R.H. Lurie Comprehensive Cancer Center of Northwestern University. We thank the Southeast Regional Collaborative Access Team (SER-CAT) and Life Sciences Collaborative Access Team (LS-CAT) at the Advanced Photon Source, Argonne National Laboratory, for assistance in data collection.

Author information

Authors and Affiliations

Authors

Contributions

X.C., H.L., A.H.R.S. and P.J.F. carried out experiments; X.H. supervised the research; X.C. and X.H. wrote the article.

Corresponding author

Correspondence to Xiaolin He.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 7003 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Liu, H., Shim, A. et al. Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions. Nat Struct Mol Biol 15, 50–56 (2008). https://doi.org/10.1038/nsmb1350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing