Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase

Abstract

Bacterial pathogens deliver virulence proteins into host cells to facilitate entry and survival. Salmonella SopA functions as an E3 ligase to manipulate the host proinflammatory response. Here we report the crystal structure of SopA in two conformations. Although it has little sequence similarity to eukaryotic HECT-domain E3s, the C-terminal half of SopA has a bilobal architecture that is reminiscent of the N- and C-lobe arrangement of HECT domains. The SopA structure also contains a putative substrate-binding domain located near the E2-binding site. The two structures of SopA differ in the relative orientations of the C lobe, indicating that SopA possesses the conformational flexibility essential for HECT E3 function. These results suggest that SopA is a unique HECT E3 ligase evolved from the coevolutionary selective pressure at the bacterium-host interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E3 ligase activity of SopA.
Figure 2: SopA crystal structure.
Figure 3: Conformational flexibility.
Figure 4: SopA-E2 interactions.
Figure 5: Comparison of bacterial and eukaryotic HECT E3 domains.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Huibregtse, J.M., Scheffner, M., Beaudenon, S. & Howley, P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 92, 2563–2567 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade. Science 286, 1321–1326 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ogunjimi, A.A. et al. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell 19, 297–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Verdecia, M.A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 11, 249–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Patel, J.C., Rossanese, O.W. & Galán, J.E. The functional interface between Salmonella and its host cell: opportunities for therapeutic intervention. Trends Pharmacol. Sci. 26, 564–570 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Stebbins, C.E. & Galan, J.E. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y., Higashide, W.M., McCormick, B.A., Chen, J. & Zhou, D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol. Microbiol. 62, 786–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Huibregtse, J.M., Scheffner, M. & Howley, P.M. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol. Cell. Biol. 13, 4918–4927 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jenkins, J. & Pickersgill, R. The architecture of parallel β-helices and related folds. Prog. Biophys. Mol. Biol. 77, 111–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Eletr, Z.M., Huang, D.T., Duda, D.M., Schulman, B.A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat. Struct. Mol. Biol. 12, 933–934 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Eletr, Z.M. & Kuhlman, B. Sequence determinants of E2–E6AP binding affinity and specificity. J. Mol. Biol. 369, 419–428 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nuber, U. & Scheffner, M. Identification of determinants in E2 ubiquitin-conjugating enzymes required for hect E3 ubiquitin-protein ligase interaction. J. Biol. Chem. 274, 7576–7582 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, N. A closer look of the HECTic ubiquitin ligases. Structure 11, 5–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Janjusevic, R., Abramovitch, R.B., Martin, G.B. & Stebbins, C.E. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311, 222–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Rohde, J.R., Breitkreutz, A., Chenal, A., Sansonetti, P.J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host & Microbe 1, 77–83 (2007).

    Article  CAS  Google Scholar 

  18. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Abrahams, J.P. & Leslie, A.G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D Biol. Crystallogr. 52, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  21. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  22. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  23. Zhang, Y., Higashide, W., Dai, S., Sherman, D.M. & Zhou, D. Recognition and ubiquitination of Salmonella type III effector SopA by a ubiquitin E3 ligase, HsRMA1. J. Biol. Chem. 280, 38682–38688 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Advanced Photon Source beam line 23-ID for assistance with data collection. This work was supported by US National Institutes of Health grants (AI049978 to D.Z. and CA072943 to J.M.H.) and by a Pew scholarship (to J.C.).

Author information

Authors and Affiliations

Authors

Contributions

J.D. determined the structures of SopA and contributed the data for Figure 4a,b. Y.Z. subcloned most of the constructs and contributed the data for Figures 1 and 4c and Supplementary Figure 3. J.D., Y.Z., J.M.H., D.Z. and J.C. designed experiments, analyzed data and prepared the manuscript.

Corresponding authors

Correspondence to Daoguo Zhou or Jue Chen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, J., Zhang, Y., Huibregtse, J. et al. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat Struct Mol Biol 15, 65–70 (2008). https://doi.org/10.1038/nsmb1346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing