Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of heme as the ligand for the orphan nuclear receptors REV-ERBα and REV-ERBβ

Abstract

The nuclear receptors REV-ERBα (encoded by NR1D1) and REV-ERBβ (NR1D2) have remained orphans owing to the lack of identified physiological ligands. Here we show that heme is a physiological ligand of both receptors. Heme associates with the ligand-binding domains of the REV-ERB receptors with a 1:1 stoichiometry and enhances the thermal stability of the proteins. Results from experiments of heme depletion in mammalian cells indicate that heme binding to REV-ERB causes the recruitment of the co-repressor NCoR, leading to repression of target genes including BMAL1 (official symbol ARNTL), an essential component of the circadian oscillator. Heme extends the known types of ligands used by the human nuclear receptor family beyond the endocrine hormones and dietary lipids described so far. Our results further indicate that heme regulation of REV-ERBs may link the control of metabolism and the mammalian clock.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of heme with the LBDs from REV-ERBα and REV-ERBβ.
Figure 2: Thermodynamics of heme association with the REV-ERB LBDs measured by ITC and circular dichroism spectroscopy.
Figure 3: Role of heme in regulation of REV-ERBα LBD activity.
Figure 4: Effect of modulation of intracellular heme on expression of REV-ERB target genes in HepG2 cells.
Figure 5: Effect of intracellular heme on NCoR interaction with REV-ERBα and recruitment to promoters.

References

  1. Miyajima, N. et al. Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell 57, 31–39 (1989).

    Article  CAS  Google Scholar 

  2. Miyajima, N. et al. Identification of two novel members of erbA superfamily by molecular cloning: the gene products of the two are highly related to each other. Nucleic Acids Res. 16, 11057–11074 (1988).

    Article  CAS  Google Scholar 

  3. Lazar, M.A., Hodin, R.A., Darling, D.S. & Chin, W.W. A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c-erbAα transcriptional unit. Mol. Cell. Biol. 9, 1128–1136 (1989).

    Article  CAS  Google Scholar 

  4. Bonnelye, E. et al. Rev-erbβ, a new member of the nuclear receptor superfamily, is expressed in the nervous system during chicken development. Cell Growth Differ. 5, 1357–1365 (1994).

    CAS  PubMed  Google Scholar 

  5. Dumas, B. et al. A new orphan member of the nuclear hormone receptor superfamily closely related to Rev-Erb. Mol. Endocrinol. 8, 996–1005 (1994).

    CAS  PubMed  Google Scholar 

  6. Enmark, E., Kainu, T., Pelto-Huikko, M. & Gustafsson, J.A. Identification of a novel member of the nuclear receptor superfamily which is closely related to Rev-ErbA. Biochem. Biophys. Res. Commun. 204, 49–56 (1994).

    Article  CAS  Google Scholar 

  7. Peña-de-Ortiz, S. & Jamieson, G.A. Jr. Molecular cloning and brain localization of HZF-2α, a new member of the Rev-erb subfamily of orphan nuclear receptors. J. Neurobiol. 32, 341–358 (1997).

    Article  Google Scholar 

  8. Retnakaran, R., Flock, G. & Giguère, V. Identification of RVR, a novel orphan nuclear receptor that acts as a negative transcriptional regulator. Mol. Endocrinol. 8, 1234–1244 (1994).

    CAS  PubMed  Google Scholar 

  9. Torra, I.P. et al. Circadian and glucocorticoid regulation of Rev-erbα expression in liver. Endocrinology 141, 3799–3806 (2000).

    Article  CAS  Google Scholar 

  10. Zvonic, S. et al. Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55, 962–970 (2006).

    Article  CAS  Google Scholar 

  11. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  Google Scholar 

  12. Renaud, J.P., Harris, J.M., Downes, M., Burke, L.J. & Muscat, G.E. Structure-function analysis of the Rev-erbA and RVR ligand-binding domains reveals a large hydrophobic surface that mediates corepressor binding and a ligand cavity occupied by side chains. Mol. Endocrinol. 14, 700–717 (2000).

    Article  CAS  Google Scholar 

  13. Harding, H.P. & Lazar, M.A. The monomer-binding orphan receptor Rev-Erb represses transcription as a dimer on a novel direct repeat. Mol. Cell. Biol. 15, 4791–4802 (1995).

    Article  CAS  Google Scholar 

  14. Burke, L.J., Downes, M., Laudet, V. & Muscat, G.E. Identification and characterization of a novel corepressor interaction region in RVR and Rev-erbAα. Mol. Endocrinol. 12, 248–262 (1998).

    CAS  PubMed  Google Scholar 

  15. Burke, L., Downes, M., Carozzi, A., Giguère, V. & Muscat, G.E. Transcriptional repression by the orphan steroid receptor RVR/Rev-erbβ is dependent on the signature motif and helix 5 in the E region: functional evidence for a biological role of RVR in myogenesis. Nucleic Acids Res. 24, 3481–3489 (1996).

    Article  CAS  Google Scholar 

  16. Guillaumond, F., Dardente, H., Giguère, V. & Cermakian, N. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J. Biol. Rhythms 20, 391–403 (2005).

    Article  CAS  Google Scholar 

  17. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  Google Scholar 

  18. Ripperger, J.A. Mapping of binding regions for the circadian regulators BMAL1 and CLOCK within the mouse Rev-erbα gene. Chronobiol. Int. 23, 135–142 (2006).

    Article  Google Scholar 

  19. Hastings, M.H. et al. Expression of clock gene products in the suprachiasmatic nucleus in relation to circadian behaviour. Novartis Found. Symp. 253, 203–222 discussion 102–109, 281–284 (2003).

    CAS  PubMed  Google Scholar 

  20. Hastings, M.H., Reddy, A.B. & Maywood, E.S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649–661 (2003).

    Article  CAS  Google Scholar 

  21. Gilles-Gonzalez, M.A. & Gonzalez, G. Signal transduction by heme-containing PAS-domain proteins. J. Appl. Physiol. 96, 774–783 (2004).

    Article  CAS  Google Scholar 

  22. Delerive, P., Chin, W.W. & Suen, C.S. Identification of Reverbα as a novel RORα target gene. J. Biol. Chem. 277, 35013–35018 (2002).

    Article  CAS  Google Scholar 

  23. Reinking, J. et al. The Drosophila nuclear receptor e75 contains heme and is gas responsive. Cell 122, 195–207 (2005).

    Article  CAS  Google Scholar 

  24. de Rosny, E. et al. Drosophila nuclear receptor E75 is a thiolate hemoprotein. Biochemistry 45, 9727–9734 (2006).

    Article  CAS  Google Scholar 

  25. Kaasik, K. & Lee, C.C. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430, 467–471 (2004).

    Article  CAS  Google Scholar 

  26. Ben-Shlomo, R. et al. Light pulse-induced heme and iron-associated transcripts in mouse brain: a microarray analysis. Chronobiol. Int. 22, 455–471 (2005).

    Article  CAS  Google Scholar 

  27. Dioum, E.M. et al. NPAS2: a gas-responsive transcription factor. Science 298, 2385–2387 (2002).

    Article  CAS  Google Scholar 

  28. Ponka, P. Cell biology of heme. Am. J. Med. Sci. 318, 241–256 (1999).

    Article  CAS  Google Scholar 

  29. Thony-Meyer, L. Biogenesis of respiratory cytochromes in bacteria. Microbiol. Mol. Biol. Rev. 61, 337–376 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu, C. et al. Binding analyses between Human PPARγ-LBD and ligands. Eur. J. Biochem. 271, 386–397 (2004).

    Article  CAS  Google Scholar 

  31. Wang, L. et al. X-ray crystal structures of the estrogen-related receptor-γ ligand binding domain in three functional states reveal the molecular basis of small molecule regulation. J. Biol. Chem. 281, 37773–37781 (2006).

    Article  CAS  Google Scholar 

  32. Ebert, P.S., Hess, R.A., Frykholm, B.C. & Tschudy, D.P. Succinylacetone, a potent inhibitor of heme biosynthesis: effect on cell growth, heme content and δ-aminolevulinic acid dehydratase activity of malignant murine erythroleukemia cells. Biochem. Biophys. Res. Commun. 88, 1382–1390 (1979).

    Article  CAS  Google Scholar 

  33. Iwasa, F., Sassa, S. & Kappas, A. δ-Aminolaevulinate synthase in human HepG2 hepatoma cells. Repression by haemin and induction by chemicals. Biochem. J. 262, 807–813 (1989).

    Article  CAS  Google Scholar 

  34. Takahashi, S. et al. CYP2E1 overexpression up-regulates both non-specific δ-aminolevulinate synthase and heme oxygenase-1 in the human hepatoma cell line HLE/2E1. Int. J. Mol. Med. 11, 57–62 (2003).

    CAS  PubMed  Google Scholar 

  35. Worthington, M.T., Cohn, S.M., Miller, S.K., Luo, R.Q. & Berg, C.L. Characterization of a human plasma membrane heme transporter in intestinal and hepatocyte cell lines. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G1172–G1177 (2001).

    Article  CAS  Google Scholar 

  36. Wyss, P.A., Boynton, S., Chu, J. & Roth, K.S. Tissue distribution of succinylacetone in the rat in vivo: a possible basis for neurotoxicity in hereditary infantile tyrosinemia. Biochim. Biophys. Acta 1182, 323–328 (1993).

    Article  CAS  Google Scholar 

  37. Tahara, T. et al. Heme positively regulates the expression of β-globin at the locus control region via the transcriptional factor Bach1 in erythroid cells. J. Biol. Chem. 279, 5480–5487 (2004).

    Article  CAS  Google Scholar 

  38. Yin, L. & Lazar, M.A. The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 19, 1452–1459 (2005).

    Article  CAS  Google Scholar 

  39. Downes, M., Burke, L.J., Bailey, P.J. & Muscat, G.E. Two receptor interaction domains in the corepressor, N-CoR/RIP13, are required for an efficient interaction with Rev-erbAα and RVR: physical association is dependent on the E region of the orphan receptors. Nucleic Acids Res. 24, 4379–4386 (1996).

    Article  CAS  Google Scholar 

  40. Chawla, A., Repa, J.J., Evans, R.M. & Mangelsdorf, D.J. Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866–1870 (2001).

    Article  CAS  Google Scholar 

  41. Raspe, E. et al. Identification of Rev-erbα as a physiological repressor of apoC-III gene transcription. J. Lipid Res. 43, 2172–2179 (2002).

    Article  CAS  Google Scholar 

  42. Raspe, E. et al. Transcriptional regulation of apolipoprotein C. III gene expression by the orphan nuclear receptor RORα. J. Biol. Chem. 276, 2865–2871 (2001).

    Article  CAS  Google Scholar 

  43. Raspe, E. et al. Transcriptional regulation of human Rev-erbα gene expression by the orphan nuclear receptor retinoic acid-related orphan receptor α. J. Biol. Chem. 277, 49275–49281 (2002).

    Article  CAS  Google Scholar 

  44. Forman, B.M. et al. Cross-talk among ROR α1 and the Rev-erb family of orphan nuclear receptors. Mol. Endocrinol. 8, 1253–1261 (1994).

    CAS  PubMed  Google Scholar 

  45. Coste, H. & Rodriguez, J.C. Orphan nuclear hormone receptor Rev-erbα regulates the human apolipoprotein CIII promoter. J. Biol. Chem. 277, 27120–27129 (2002).

    Article  CAS  Google Scholar 

  46. Fontaine, C. et al. The orphan nuclear receptor Rev-Erbα is a peroxisome proliferator-activated receptor (PPAR) γ target gene and promotes PPARγ-induced adipocyte differentiation. J. Biol. Chem. 278, 37672–37680 (2003).

    Article  CAS  Google Scholar 

  47. Shimba, S. et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl. Acad. Sci. USA 102, 12071–12076 (2005).

    Article  CAS  Google Scholar 

  48. Yang, X. et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 126, 801–810 (2006).

    Article  CAS  Google Scholar 

  49. Turek, F.W. et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043–1045 (2005).

    Article  CAS  Google Scholar 

  50. Rudic, R.D. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377 (2004).

    Article  Google Scholar 

  51. Handschin, C. et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell 122, 505–515 (2005).

    Article  CAS  Google Scholar 

  52. Liu, C., Li, S., Liu, T., Borjigin, J. & Lin, J.D. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447, 477–481 (2007).

    Article  CAS  Google Scholar 

  53. Chen, J.J. & London, I.M. Hemin enhances the differentiation of mouse 3T3 cells to adipocytes. Cell 26, 117–122 (1981).

    Article  CAS  Google Scholar 

  54. Myers, J.K., Pace, C.N. & Scholtz, J.M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995).

    Article  CAS  Google Scholar 

  55. Taille, C. et al. Induction of heme oxygenase-1 inhibits NAD(P)H oxidase activity by down-regulating cytochrome b558 expression via the reduction of heme availability. J. Biol. Chem. 279, 28681–28688 (2004).

    Article  CAS  Google Scholar 

  56. Stayrook, K.R. et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 146, 984–991 (2005).

    Article  CAS  Google Scholar 

  57. Yin, L., Wang, J., Klein, P.S. & Lazar, M.A. Nuclear receptor Rev-erbα is a critical lithium-sensitive component of the circadian clock. Science 311, 1002–1005 (2006).

    Article  CAS  Google Scholar 

  58. Burris, T.P. et al. The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. Mol. Pharmacol. 67, 948–954 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (GM055217) to F.R. and an unrestricted research grant from Eli Lilly and Company to T.P.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas P Burris or Fraydoon Rastinejad.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Methods (PDF 375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghuram, S., Stayrook, K., Huang, P. et al. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBα and REV-ERBβ. Nat Struct Mol Biol 14, 1207–1213 (2007). https://doi.org/10.1038/nsmb1344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing