Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

L3MBTL1 recognition of mono- and dimethylated histones

An Erratum to this article was published on 01 January 2008

This article has been updated

Abstract

Crystal structures of the L3MBTL1 MBT repeats in complex with histone H4 peptides dimethylated on Lys20 (H4K20me2) show that only the second of the three MBT repeats can bind mono- and dimethylated histone peptides. Its binding pocket has similarities to that of 53BP1 and is able to recognize the degree of histone lysine methylation. An unexpected mode of peptide-mediated dimerization suggests a possible mechanism for chromatin compaction by L3MBTL1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The second MBT repeat of L3MBTL1 binds H4K20me2.
Figure 2: Comparison of lysine-binding pockets in L3MBTL1 and 53BP1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Change history

  • 18 December 2007

    In the version of this article initially published, the "Accession codes" section was missing. The section should read: Accession codes. Protein Data Bank: Coordinates and structure factors have codes 2PQW, 2RJE and 2RJF (L3MBTL1–H4K20me2 complexes), 2RJD (L3MBTL1 apo-structure) and 2RJC (L3MBTL1–MES complex). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Maurer-Stroh, S. et al. Trends Biochem. Sci. 28, 69–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Kim, J. et al. EMBO Rep. 7, 397–403 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Klymenko, T. et al. Genes Dev. 20, 1110–1122 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wismar, J. et al. Mech. Dev. 53, 141–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Boccuni, P., MacGrogan, D., Scandura, J.M. & Nimer, S.D. J. Biol. Chem. 278, 15412–15420 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Trojer, P. et al. Cell 129, 915–928 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, W.K. et al. Structure 11, 775–789 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jacobs, S.A. & Khorasanizadeh, S. Science 295, 2080–2083 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Nielsen, P.R. et al. Nature 416, 103–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Min, J., Zhang, Y. & Xu, R.M. Genes Dev. 17, 1823–1828 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fischle, W. et al. Genes Dev. 17, 1870–1881 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flanagan, J.F. et al. Nature 438, 1181–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.M. Science 312, 748–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Shi, X. et al. Nature 442, 96–99 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, H. et al. Nature 442, 91–95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mavri, J. & Vogel, H.J. Proteins 18, 381–389 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Botuyan, M.V. et al. Cell 127, 1361–1373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nielsen, S.J. et al. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Brasher, S.V. et al. EMBO J. 19, 1587–1597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Edwards for critically reading and discussing the manuscript, and M. Schapira, I. Kozieradzki, A. Dong, G. Senisterra, G. Wasney, P. Loppnau and L. Crombet for technical assistance and advice. This research was supported by the Structural Genomics Consortium, a registered charity (number 1097737) that receives funds from the Canadian Institutes for Health Research, the Canadian Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Foundation, the Ontario Innovation Trust, the Ontario Ministry for Research and Innovation, Merck & Co., the Novartis Research Foundation, the Swedish Agency for Innovation Systems, the Swedish Foundation for Strategic Research and the Wellcome Trust. Additional support was provided by the National Science Foundation of China (30670429 to J.M. and C.Q.) and the National Cancer Institute of Canada with funds from the Canadian Cancer Society (C.H.A. and N.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinrong Min.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1 and 2, Supplementary Methods (PDF 1838 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, J., Allali-Hassani, A., Nady, N. et al. L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol 14, 1229–1230 (2007). https://doi.org/10.1038/nsmb1340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing