Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex

Abstract

The most complex RNA pseudouridylases are H/ACA ribonucleoprotein particles, which use a guide RNA for substrate capture and four proteins (Cbf5, Nop10, Gar1 and L7Ae/NHP2) for substrate modification. Here we report the three-dimensional structure of a catalytically deficient archaeal enzyme complex (including the guide RNA and three of the four essential proteins) bound to a substrate RNA. Extensive interactions of Cbf5 with one guide-substrate helix and a guide RNA stem shape the forked guide–substrate RNA complex structure and position the substrate in proximity of the Cbf5 catalytic center. Our structural and complementary fluorescence analyses also indicate that precise placement of the target uridine at the active site requires a conformation of the guide–substrate RNA duplex that is brought about by the previously identified concurrent interaction of the guide RNA with L7Ae and a composite Cbf5-Nop10 surface, and further identify a residue that is critical in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the substrate-loaded H/ACA RNP subcomplex structure.
Figure 2: Structural features of the guide and target RNAs in the complex.
Figure 3: RNA-RNA and RNA-protein interactions in the H/ACA RNP structure.
Figure 4: Guide RNA conformation and RNA-protein contacts in the presence and absence of L7Ae.
Figure 5: Effect of L7Ae on target RNA conformation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hannon, G.J., Rivas, F.V., Murchison, E.P. & Steitz, J.A. The expanding universe of noncoding RNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 551–564 (2006).

    Article  CAS  Google Scholar 

  2. Matera, A.G., Terns, R.M. & Terns, M.P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat. Rev. Genet. 8, 209–220 (2007).

    Article  CAS  Google Scholar 

  3. Huttenhofer, A. & Schattner, P. The principles of guiding by RNA: chimeric RNA-protein enzymes. Nat. Rev. Genet. 7, 475–482 (2006).

    Article  Google Scholar 

  4. Decatur, W.A. & Fournier, M.J. RNA-guided nucleotide modification of ribosomal and other RNAs. J. Biol. Chem. 278, 695–698 (2003).

    Article  CAS  Google Scholar 

  5. Yu, Y.T., Terns, R.M. & Terns, M.P. in Fine-tuning of RNA Functions by Modification and Editing. (ed. Grosjean, H.) 223–262 (Springer, New York, 2005).

    Google Scholar 

  6. Kiss, T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 20, 3617–3622 (2001).

    Article  CAS  Google Scholar 

  7. Decatur, W.A. & Fournier, M.J. rRNA modifications and ribosome function. Trends Biochem. Sci. 27, 344–351 (2002).

    Article  CAS  Google Scholar 

  8. King, T.H., Liu, B., McCully, R.R. & Fournier, M.J. Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol. Cell 11, 425–435 (2003).

    Article  CAS  Google Scholar 

  9. Ni, J., Tien, A.L. & Fournier, M.J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89, 565–573 (1997).

    Article  CAS  Google Scholar 

  10. Ganot, P., Bortolin, M.L. & Kiss, T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89, 799–809 (1997).

    Article  CAS  Google Scholar 

  11. Darzacq, X. et al. Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J. 21, 2746–2756 (2002).

    Article  CAS  Google Scholar 

  12. Eliceiri, G.L. The vertebrate E1/U17 small nucleolar ribonucleoprotein particle. J. Cell. Biochem. 98, 486–495 (2006).

    Article  CAS  Google Scholar 

  13. Collins, K. The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell Biol. 7, 484–494 (2006).

    Article  CAS  Google Scholar 

  14. Omer, A.D., Ziesche, S., Decatur, W.A., Fournier, M.J. & Dennis, P.P. RNA-modifying machines in archaea. Mol. Microbiol. 48, 617–629 (2003).

    Article  CAS  Google Scholar 

  15. Arnez, J.G. & Steitz, T.A. Crystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry 33, 7560–7567 (1994).

    Article  CAS  Google Scholar 

  16. Davis, D.R. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res. 23, 5020–5026 (1995).

    Article  CAS  Google Scholar 

  17. Newby, M.I. & Greenbaum, N.L. A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. RNA 7, 833–845 (2001).

    Article  CAS  Google Scholar 

  18. Yarian, C.S. et al. Structural and functional roles of the N1- and N3-protons of psi at tRNA's position 39. Nucleic Acids Res. 27, 3543–3549 (1999).

    Article  CAS  Google Scholar 

  19. Newby, M.I. & Greenbaum, N.L. Investigation of Overhauser effects between pseudouridine and water protons in RNA helices. Proc. Natl. Acad. Sci. USA 99, 12697–12702 (2002).

    Article  CAS  Google Scholar 

  20. Yang, C., McPheeters, D.S. & Yu, Y.T. Psi35 in the branch site recognition region of U2 small nuclear RNA is important for pre-mRNA splicing in Saccharomyces cerevisiae. J. Biol. Chem. 280, 6655–6662 (2005).

    Article  CAS  Google Scholar 

  21. Zhao, X. & Yu, Y.T. Pseudouridines in and near the branch site recognition region of U2 snRNA are required for snRNP biogenesis and pre-mRNA splicing in Xenopus oocytes. RNA 10, 681–690 (2004).

    Article  CAS  Google Scholar 

  22. Donmez, G., Hartmuth, K. & Luhrmann, R. Modified nucleotides at the 5′ end of human U2 snRNA are required for spliceosomal E-complex formation. RNA 10, 1925–1933 (2004).

    Article  Google Scholar 

  23. Yu, Y.T., Shu, M.D. & Steitz, J.A. Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J. 17, 5783–5795 (1998).

    Article  CAS  Google Scholar 

  24. Valadkhan, S. & Manley, J.L. Characterization of the catalytic activity of U2 and U6 snRNAs. RNA 9, 892–904 (2003).

    Article  CAS  Google Scholar 

  25. Yu, Y.T. The most complex pseudouridylase. Structure 14, 167–168 (2006).

    Article  CAS  Google Scholar 

  26. Reichow, S.L., Hamma, T., Ferre-D'Amare, A.R. & Varani, G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 35, 1452–1464 (2007).

    Article  CAS  Google Scholar 

  27. Wang, C. & Meier, U.T. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J. 23, 1857–1867 (2004).

    Article  CAS  Google Scholar 

  28. Baker, D.L. et al. RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes Dev. 19, 1238–1248 (2005).

    Article  CAS  Google Scholar 

  29. Charpentier, B., Muller, S. & Branlant, C. Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Res. 33, 3133–3144 (2005).

    Article  CAS  Google Scholar 

  30. Koonin, E.V. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 24, 2411–2415 (1996).

    Article  CAS  Google Scholar 

  31. Marrone, A., Walne, A. & Dokal, I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr. Opin. Genet. Dev. 15, 249–257 (2005).

    Article  CAS  Google Scholar 

  32. Marrone, A. & Mason, P.J. Dyskeratosis congenita. Cell. Mol. Life Sci. 60, 507–517 (2003).

    Article  CAS  Google Scholar 

  33. Hamma, T. & Ferre-D'Amare, A.R. Pseudouridine synthases. Chem. Biol. 13, 1125–1135 (2006).

    Article  CAS  Google Scholar 

  34. Normand, C. et al. Analysis of the binding of the N-terminal conserved domain of yeast Cbf5p to a box H/ACA snoRNA. RNA 12, 1868–1882 (2006).

    Article  CAS  Google Scholar 

  35. Bortolin, M.L., Ganot, P. & Kiss, T. Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. EMBO J. 18, 457–469 (1999).

    Article  CAS  Google Scholar 

  36. Manival, X. et al. Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5-aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity. Nucleic Acids Res. 34, 826–839 (2006).

    Article  CAS  Google Scholar 

  37. Hamma, T., Reichow, S.L., Varani, G. & Ferre-D'Amare, A.R. The Cbf5–Nop10 complex is a molecular bracket that organizes box H/ACA RNPs. Nat. Struct. Mol. Biol. 12, 1101–1107 (2005).

    Article  CAS  Google Scholar 

  38. Rashid, R. et al. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol. Cell 21, 249–260 (2006).

    Article  CAS  Google Scholar 

  39. Li, L. & Ye, K. Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443, 302–307 (2006).

    Article  CAS  Google Scholar 

  40. Wu, H. & Feigon, J. H/ACA small nucleolar RNA pseudouridylation pockets bind substrate RNA to form three-way junctions that position the target U for modification. Proc. Natl. Acad. Sci. USA 104, 6655–6660 (2007).

    Article  CAS  Google Scholar 

  41. Jin, H., Loria, J.P. & Moore, P.B. Solution structure of an rRNA substrate bound to the pseudouridylation pocket of a box H/ACA snoRNA. Mol. Cell 26, 205–215 (2007).

    Article  CAS  Google Scholar 

  42. Schattner, P. et al. Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res. 32, 4281–4296 (2004).

    Article  CAS  Google Scholar 

  43. Ganot, P., Caizergues-Ferrer, M. & Kiss, T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11, 941–956 (1997).

    Article  CAS  Google Scholar 

  44. Walne, A.J. et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum. Mol. Genet. 16, 1619–1629 (2007).

    Article  CAS  Google Scholar 

  45. Hoang, C., Hamilton, C.S., Mueller, E.G. & Ferre-D'Amare, A.R. Precursor complex structure of pseudouridine synthase TruB suggests coupling of active site perturbations to an RNA-sequestering peripheral protein domain. Protein Sci. 14, 2201–2206 (2005).

    Article  CAS  Google Scholar 

  46. Baker, D. et al. Determination of protein-RNA interaction sites in the CBF5-H/ACA guide RNA complex by mass spectrometric protein footprinting. Biochemistry (in the press).

  47. Hoang, C. & Ferre-D'Amare, A.R. Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107, 929–939 (2001).

    Article  CAS  Google Scholar 

  48. Pan, H., Agarwalla, S., Moustakas, D.T., Finer-Moore, J. & Stroud, R.M. Structure of tRNA pseudouridine synthase TruB and its RNA complex: RNA recognition through a combination of rigid docking and induced fit. Proc. Natl. Acad. Sci. USA 100, 12648–12653 (2003).

    Article  CAS  Google Scholar 

  49. Otwinowski, Z., & Minor, W. in Processing of X-ray Diffraction Data Collected in Oscillation Mode Methods in Enzymology Vol. 276 (eds. Carter, C.W. & Sweet, R.M.) 307–326 (Academic Press, San Diego, 1997).

    Google Scholar 

  50. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  51. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  52. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998).

    CAS  Google Scholar 

  53. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. 53, 240–255 (1997).

    CAS  Google Scholar 

  54. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grant R01 GM66958-01 (H.L.) and NIH grant RO1 GM54682 (M.T. and R.T.). B. Liang is a predoctoral fellow of the American Heart Association, Florida/Puerto Rico Affiliate (0615182B). X-ray diffraction data were collected from the Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory. Supporting institutions for APS beamlines are listed at http://necat.chem.cornell.edu/ and http://www.ser-cat.org/members.html. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Contributions

B.L. designed and carried out crystallographic studies of the wild-type complex, acquired fluorescence data, and contributed to manuscript preparation; S.X. carried out crystallographic studies of the D85A mutant complex and contributed to manuscript preparation; M.P.T. and R.M.T. supplied plasmids encoding H/ACA RNP proteins and contributed to manuscript preparation; H.L. supervised the project and contributed to manuscript preparation.

Corresponding author

Correspondence to Hong Li.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1 and 2 (PDF 253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, B., Xue, S., Terns, R. et al. Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex. Nat Struct Mol Biol 14, 1189–1195 (2007). https://doi.org/10.1038/nsmb1336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing