Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites

Abstract

The 26S proteasome holoenzyme is formed by the association of a 20S core particle (CP) with a 19S regulatory particle (RP). The CP-RP interaction is labile and subject to regulation in vivo, but the factors controlling this association are poorly understood. Here we describe an in vitro proteasome reconstitution assay and a high-resolution, two-dimensional gel electrophoresis system. Using these techniques, we find that a yeast CP–RP complex can contain a substoichiometric amount of tightly bound, essentially non-exchangeable ATP. However, this nucleotide is dispensable for gating of the CP channel, provided that the CP–RP complex is preserved by the Ecm29 protein. Unexpectedly, proteasome inhibitors are potent in stabilizing proteasomes against the dissociation of CP–RP. These data indicate that active sites of the CP communicate with bound RP, despite their spatial separation. We propose that ongoing protein degradation may suppress proteasome disassembly, thereby enhancing the processivity of proteolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the CP-RP interaction by purification and reconstitution.
Figure 2: Nucleotide dependence of the CP-RP interaction.
Figure 3: CP-RP dissociation in the absence of nucleotide.
Figure 4: Ecm29 can substitute for nucleotide.
Figure 5: Proteasome inhibitors stabilize the CP-RP interaction.
Figure 6: Stabilization depends on the reactive groups of inhibitors.
Figure 7: Dose dependence of proteasome stabilization and inhibition.

Similar content being viewed by others

References

  1. Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7, 742–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Pickart, C.M. & Cohen, R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 5, 177–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Maupin-Furlow, J.A. et al. Proteasomes from structure to function: perspectives from Archaea. Curr. Top. Dev. Biol. 75, 125–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Smith, D.M. et al. Docking of proteasomal ATPases' carboxyl termini in the 20S proteasomal alpha ring opens the gate for substrate entry. Mol. Cell 27, 731–744 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Glickman, M.H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Yao, T. & Cohen, R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Hartmann-Petersen, R., Tanaka, K. & Hendil, K.B. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch. Biochem. Biophys. 386, 89–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Nandi, D., Tahiliani, P., Kumar, A. & Chandu, D. The ubiquitin-proteasome system. J. Biosci. 31, 137–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, C.W. et al. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol. Cell 24, 39–50 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoffman, L., Pratt, G. & Rechsteiner, M. Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J. Biol. Chem. 267, 22362–22368 (1992).

    CAS  PubMed  Google Scholar 

  13. Armon, T., Ganoth, D. & Hershko, A. Assembly of the 26 S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity. J. Biol. Chem. 265, 20723–20726 (1990).

    CAS  PubMed  Google Scholar 

  14. Eytan, E., Ganoth, D., Armon, T. & Hershko, A. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc. Natl. Acad. Sci. USA 86, 7751–7755 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith, D.M. et al. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 20, 687–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Satoh, K., Sasajima, H., Nyoumura, K.I., Yokosawa, H. & Sawada, H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 40, 314–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Leggett, D.S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Stanhill, A. et al. An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity. Mol. Cell 23, 875–885 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Imai, J., Maruya, M., Yashiroda, H., Yahara, I. & Tanaka, K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J. 22, 3557–3567 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt, M. et al. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct. Mol. Biol. 12, 294–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Park, Y. et al. Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases. Mol. Cell. Biol. 25, 3842–3853 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leggett, D.S., Glickman, M.H. & Finley, D. Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol. Biol. 301, 57–70 (2005).

    CAS  PubMed  Google Scholar 

  23. Bajorek, M., Finley, D. & Glickman, M.H. Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr. Biol. 13, 1140–1144 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Vernace, V.A., Arnaud, L., Schmidt-Glenewinkel, T. & Figueiredo-Pereira, M.E. Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J. 21, 2672–2682 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Babbitt, S.E. et al. ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle. Cell 121, 553–565 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Hendil, K.B., Hartmann-Petersen, R. & Tanaka, K. 26 S proteasomes function as stable entities. J. Mol. Biol. 315, 627–636 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Rubin, D.M., Glickman, M.H., Larsen, C.N., Dhruvakumar, S. & Finley, D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 17, 4909–4919 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kohler, A. et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 7, 1143–1152 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Forster, A., Masters, E.I., Whitby, F.G., Robinson, H. & Hill, C.P. The 1.9 Å structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 18, 589–599 (2005).

    Article  PubMed  Google Scholar 

  30. Smith, D.M., Benaroudj, N. & Goldberg, A. Proteasomes and their associated ATPases: a destructive combination. J. Struct. Biol. 156, 72–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Saeki, Y., Toh-e, A. & Yokosawa, H. Rapid isolation and characterization of the yeast proteasome regulatory complex. Biochem. Biophys. Res. Commun. 273, 509–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Kleijnen, M.F. et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell 6, 409–419 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Groll, M., Kim, K.B., Kairies, N., Huber, R. & Crews, C.M. Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of α′,β′-epoxyketone proteasome inhibitors. J. Am. Chem. Soc. 122, 1237–1238 (2000).

    Article  CAS  Google Scholar 

  34. Groll, M., Berkers, C.R., Ploegh, H.L. & Ovaa, H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 14, 451–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Meng, L. et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA 96, 10403–10408 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berkers, C.R. et al. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat. Methods 2, 357–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Arendt, C.S. & Hochstrasser, M. Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J. 18, 3575–3585 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Joshi, S.A., Hersch, G.L., Baker, T.A. & Sauer, R.T. Communication between ClpX and ClpP during substrate processing and degradation. Nat. Struct. Mol. Biol. 11, 404–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Singh, S.K., Guo, F. & Maurizi, M.R. ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease. Biochemistry 38, 14906–14915 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Chu-Ping, M., Vu, J.H., Proske, R.J., Slaughter, C.A. & DeMartino, G.N. Identification, purification, and characterization of a high molecular weight, ATP-dependent activator (PA700) of the 20 S proteasome. J. Biol. Chem. 269, 3539–3547 (1994).

    CAS  PubMed  Google Scholar 

  41. Elsasser, S., Schmidt, M. & Finley, D. Characterization of the proteasome using native gel electrophoresis. Methods Enzymol. 398, 353–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, P. et al. Purification of the Arabidopsis 26 S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J. Biol. Chem. 279, 6401–6413 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Arendt, C.S. & Hochstrasser, M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc. Natl. Acad. Sci. USA 94, 7156–7161 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Hochstrasser (Yale University) for yeast strains; Millennium Pharmaceuticals for PS-341; M. Maurizi, D.S. Newburg, and members of the Finley laboratory, especially J. Hanna and N. Sofaer, for reading the manuscript and for insightful comments; and the ICCB screening facility at Harvard Medical School for use of their facility. This research was supported by grants from the US National Institutes of Health grants to D.F. (GM43601) and R.W.K. (GM66492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Finley.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1, Supplementary Methods (PDF 894 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleijnen, M., Roelofs, J., Park, S. et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14, 1180–1188 (2007). https://doi.org/10.1038/nsmb1335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing