Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A charged and contoured surface on the nucleosome regulates chromatin compaction

Abstract

Local nucleosome-nucleosome interactions in cis drive chromatin folding, whereas interactions in trans lead to fiber-fiber oligomerization. Here we show that peptides derived from the histone H4 tail and Kaposi's sarcoma herpesvirus LANA protein can replace the endogenous H4 tail, resulting in array folding and oligomerization. Neutralization of a LANA binding site on the histone surface enhanced rather than abolished nucleosome-nucleosome interactions. We maintain that the contoured nucleosome surface is centrally involved in regulating chromatin condensation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: LANA1–23 promotes chromatin self-association.
Figure 2: A negatively charged region on the surface of the nucleosome acts as a repulsive domain.
Figure 3: The H4 tail and LANA peptide act in trans to promote self-association and folding.

References

  1. Barbera, A.J. et al. Science 311, 856–861 (2006).

    Article  CAS  Google Scholar 

  2. Dorigo, B. et al. Science 306, 1571–1573 (2004).

    Article  CAS  Google Scholar 

  3. Gordon, F., Luger, K. & Hansen, J.C. J. Biol. Chem. 280, 33701–33706 (2005).

    Article  CAS  Google Scholar 

  4. Hansen, J.C. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392 (2002).

    Article  CAS  Google Scholar 

  5. Schwarz, P.M., Felthauser, A., Fletcher, T.M. & Hansen, J.C. Biochemistry 35, 4009–4015 (1996).

    Article  CAS  Google Scholar 

  6. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T.J. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  Google Scholar 

  7. Cary, P.D., Crane-Robinson, C., Bradbury, E.M. & Dixon, G.H. Eur. J. Biochem. 127, 137–143 (1982).

    Article  CAS  Google Scholar 

  8. Luger, K., Maeder, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–259 (1997).

    Article  CAS  Google Scholar 

  9. Narita, M. et al. Cell 113, 703–716 (2003).

    Article  CAS  Google Scholar 

  10. Shogren-Knaak, M. et al. Science 311, 844–847 (2006).

    Article  CAS  Google Scholar 

  11. Freitas, M.A., Sklenar, A.R. & Parthun, M.R. J. Cell. Biochem. 92, 691–700 (2004).

    Article  CAS  Google Scholar 

  12. Park, J.H., Cosgrove, M.S., Youngman, E., Wolberger, C. & Boeke, J.D. Nat. Genet. 32, 273–279 (2002).

    Article  CAS  Google Scholar 

  13. Matsubara, K., Sano, N., Umehara, T. & Horikoshi, M. Genes Cells 12, 13–33 (2007).

    Article  CAS  Google Scholar 

  14. Suto, R.K., Clarkson, M.J., Tremethick, D.J. & Luger, K. Nat. Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  Google Scholar 

  15. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  16. DeLano, W.L. The PyMOL User's Manual (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank P.N. Dyer for help with the preparation of histones and DNA. Supported by US National Institutes of Health grants GM067777 to K.L., CA82036 to K.M.K. and GM45916 to J.C.H. K.L. is also supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolin Luger.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Table 1, Supplementary Methods (PDF 154 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chodaparambil, J., Barbera, A., Lu, X. et al. A charged and contoured surface on the nucleosome regulates chromatin compaction. Nat Struct Mol Biol 14, 1105–1107 (2007). https://doi.org/10.1038/nsmb1334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing