Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity

Abstract

Nonsense-mediated mRNA decay (NMD) eliminates mRNAs containing a premature translation termination codon through the recruitment of the conserved NMD factors UPF1, UPF2 and UPF3. In humans, a dynamic assembly pathway allows UPF1 to join UPF2 and UPF3 recruited to the mRNA by the exon-junction complex (EJC). Here we show that the recombinant EJC core is sufficient to reconstitute, with the three UPF proteins, a stable heptameric complex on RNA. The EJC proteins MAGOH, Y14 and eIF4AIII provide a composite binding site for UPF3b that serves as a bridge to UPF2 and UPF1. In the UPF trimeric complex, UPF2 and UPF3b cooperatively stimulate both ATPase and RNA helicase activities of UPF1. This work demonstrates that the EJC core is sufficient to stably anchor the UPF proteins to mRNA and provides insights into the regulation of its central effector, UPF1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UPF1, UPF2 and UPF3b form a stable trimeric complex.
Figure 2: UPF2 reduces UPF1 binding to RNA.
Figure 3: Association of the UPF trimeric complex with the EJC core complex.
Figure 4: The EJC offers a composite binding site for UPF3b.
Figure 5: Mutational analyses of the UPF3b binding site on the EJC core surface.
Figure 6: UPF2 and UPF3b stimulate the UPF1 ATPase activity.
Figure 7: UPF2 and UPF3b stimulate the unwinding activity of UPF1.
Figure 8: Model illustrating the modulation of UPF1 activity during the human NMD pathway.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fasken, M.B. & Corbett, A.H. Process or perish: quality control in mRNA biogenesis. Nat. Struct. Mol. Biol. 12, 482–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Moore, M.J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Rehwinkel, J., Raes, J. & Izaurralde, E. Nonsense-mediated mRNA decay: target genes and functional diversification of effectors. Trends Biochem. Sci. 31, 639–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Conti, E. & Izaurralde, E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17, 316–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Behm-Ansmant, I. & Izaurralde, E. Quality control of gene expression: a stepwise assembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes Dev. 20, 391–398 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Amrani, N. et al. A faux 3′–UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V. & Izaurralde, E. A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J. 26, 1591–1601 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Longman, D., Plasterk, R.H., Johnstone, I.L. & Caceres, J.F. Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway. Genes Dev. 21, 1075–1085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carter, M.S., Li, S. & Wilkinson, M.F. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J. 15, 5965–5975 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Brocke, K.S., Neu-Yilik, G., Gehring, N.H., Hentze, M.W. & Kulozik, A.E. The human intronless melanocortin 4-receptor gene is NMD insensitive. Hum. Mol. Genet. 11, 331–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Tange, T.O., Shibuya, T., Jurica, M.S. & Moore, M.J. Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA 11, 1869–1883 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andersen, C.B. et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313, 1968–1972 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Bono, F., Ebert, J., Lorentzen, E. & Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713–725 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tange, T.O., Nott, A. & Moore, M.J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol. 16, 279–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Giorgi, C. & Moore, M.J. The nuclear nurture and cytoplasmic nature of localized mRNPs. Semin. Cell Dev. Biol. 18, 186–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Kashima, I. et al. Binding of a novel SMG-1–UPF1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers UPF1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 20, 355–367 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, V.N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUPF3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUPF3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Gehring, N.H. et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 20, 65–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kadlec, J., Izaurralde, E. & Cusack, S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol. 11, 330–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. He, F., Brown, A.H. & Jacobson, A. UPF1p, Nmd2p, and UPF3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell. Biol. 17, 1580–1594 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Serin, G., Gersappe, A., Black, J.D., Aronoff, R. & Maquat, L.E. Identification and characterization of human orthologues to Saccharomyces cerevisiae UPF2 protein and UPF3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209–223 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kadlec, J., Guilligay, D., Ravelli, R.B. & Cusack, S. Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1. RNA 12, 1817–1824 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Applequist, S.E., Selg, M., Raman, C. & Jack, H.M. Cloning and characterization of HUPF1, a human homolog of the Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein. Nucleic Acids Res. 25, 814–821 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weng, Y., Czaplinski, K. & Peltz, S.W. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the UPF protein complex but not mRNA turnover. Mol. Cell. Biol. 16, 5491–5506 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheng, Z., Muhlrad, D., Lim, M.K., Parker, R. & Song, H. Structural and functional insights into the human UPF1 helicase core. EMBO J. 26, 253–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Singleton, M.R., Dillingham, M.S. & Wigley, D.B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Czaplinski, K., Weng, Y., Hagan, K.W. & Peltz, S.W. Purification and characterization of the UPF1 protein: a factor involved in translation and mRNA degradation. RNA 1, 610–623 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Weng, Y., Czaplinski, K. & Peltz, S.W. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the UPF1 protein. Mol. Cell. Biol. 16, 5477–5490 (1996b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhattacharya, A. et al. Characterization of the biochemical properties of the human UPF1 gene product that is involved in nonsense-mediated mRNA decay. RNA 6, 1226–1235 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kunz, J.B., Neu-Yilik, G., Hentze, M.W., Kulozik, A.E. & Gehring, N.H. Functions of hUPF3a and hUPF3b in nonsense-mediated mRNA decay and translation. RNA 12, 1015–1022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He, F., Brown, A.H. & Jacobson, A. Interaction between Nmd2p and UPF1p is required for activity but not for dominant-negative inhibition of the nonsense-mediated mRNA decay pathway in yeast. RNA 2, 153–170 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Weng, Y., Czaplinski, K. & Peltz, S.W. ATP is a cofactor of the UPF1 protein that modulates its translation termination and RNA binding activities. RNA 4, 205–214 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, J.L. et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6, 89–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Shibuya, T., Tange, T.O., Stroupe, M.E. & Moore, M.J. Mutational analysis of human eIF4AIII identifies regions necessary for exon junction complex formation and nonsense-mediated mRNA decay. RNA 12, 360–374 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fribourg, S., Gatfield, D., Izaurralde, E. & Conti, E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol. 10, 433–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Forler, D. et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol. 21, 89–92 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Bono, F. et al. Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep. 5, 304–310 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chandran, V. et al. Recognition and cooperation between the ATP-dependent RNA helicase RhlB and ribonuclease RNase E. J. Mol. Biol. 367, 113–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665–1677 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, Y.K., Furic, L., Desgroseillers, L. & Maquat, L.E. Mammalian Staufen1 recruits UPF1 to specific mRNA 3UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Kaygun, H. & Marzluff, W.F. Regulated degradation of replication-dependent histone mRNAs requires both ATR and UPF1. Nat. Struct. Mol. Biol. 12, 794–800 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Chan, W.K. et al. An alternative branch of the nonsense-mediated decay pathway. EMBO J. 26, 1820–1830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cordin, O., Tanner, N.K., Doere, M., Linder, P. & Banroques, J. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J. 23, 2478–2487 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Conti, (MPI of Biochemistry, Martinsried, Germany), S. Cusack (EMBL, Grenoble, France) and F. Lejeune (IGMM-CNRS, Montpellier, France) for UPF cDNAs. We are grateful to B. Marchadier, B. Séraphin and his laboratory for technical assistance, helpful advice and discussions. We acknowledge S. Camier, E. Conti, M. Dreyfus and A. Expert-Bezançon for carefully reading the manuscript. This work was supported in part by the Centre National de la Recherche Scientifique (CNRS), La Ligue Contre le Cancer, the Research Ministry (grant ACI-jeunes chercheurs) and the Agence Nationale de la Recherche (ANR). F.B. was supported by the Max Planck Institute of Biochemistry.

Author information

Authors and Affiliations

Authors

Contributions

L.B. initiated this work; H.C., L.B., F.B. and H.L.H. cloned cDNAs, and expressed and purified recombinant proteins; L.B., H.C. and F.B. performed protein binding assays; F.B. carried out RNA protection and ATPase assays; H.C. carried out duplex unwinding assays. H.L.H. provided resources, conceived and directed the project and wrote the article.

Corresponding author

Correspondence to Hervé Le Hir.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 1801 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamieh, H., Ballut, L., Bonneau, F. et al. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat Struct Mol Biol 15, 85–93 (2008). https://doi.org/10.1038/nsmb1330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing