Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conformational dynamics of the KcsA potassium channel governs gating properties


K+ channels conduct and regulate K+ flux across the cell membrane. Several crystal structures and biophysical studies of tetrameric ion channels have revealed many of the structural details of ion selectivity and gating. A narrow pore lined with four arrays of carbonyl groups is responsible for ion selectivity, whereas a conformational change of the four inner transmembrane helices (TM2) is involved in gating. We used NMR to examine full-length KcsA, a prototypical K+ channel, in its open, closed and intermediate states. These studies reveal that at least two conformational states exist both in the selectivity filter and near the C-terminal ends of the TM2 helices. In the ion-conducting open state, we observed rapid structural exchange between two conformations of the filter, presumably of low and high K+ affinity, respectively. Such measurements of millisecond-timescale dynamics reveal the basis for simultaneous ion selection and gating.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Secondary structure of KcsA(tox) in the closed and open conformations.
Figure 2: Correlation between functional and structural data for KcsA.
Figure 3: Conformational difference in the backbone angle φ of Tyr78 between the conducting (pH 4) and nonconducting (pH 7) conformations of KcsA(tox).
Figure 4: pH titration of 15N-Tyr–labeled KcsA(tox) in the presence of K+, and KcsA(E71A) in the absence of K+.
Figure 5: Channel conductance modeled on the basis of different exchange rates of the filter residues and the C terminus of TM2.


  1. Hille, B. Ion Channels of Excitable Membranes 3rd edn. (Sinauder, Sunderland, Massachusetts, USA, 2001).

    Google Scholar 

  2. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  3. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    Article  CAS  Google Scholar 

  4. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003).

    Article  CAS  Google Scholar 

  5. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    Article  CAS  Google Scholar 

  6. Shi, N., Ye, S., Alam, A., Chen, L. & Jiang, Y. Atomic structure of a Na+ and K+-conducting channel. Nature 440, 570–574 (2006).

    Article  CAS  Google Scholar 

  7. Valiyaveetil, F.I., Sekedat, M., MacKinnon, R. & Muir, T.W. Glycine as a d-amino acid surrogate in the K+-selectivity filter. Proc. Natl. Acad. Sci. USA 101, 17045–17049 (2004).

    Article  CAS  Google Scholar 

  8. Bezanilla, F. & Armstrong, C.M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J. Gen. Physiol. 60, 588–608 (1972).

    Article  CAS  Google Scholar 

  9. Noskov, S.Y. & Roux, B. Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels. J. Gen. Physiol. 129, 135–143 (2007).

    Article  CAS  Google Scholar 

  10. Perozo, E., Cortes, D.M. & Cuello, L.G. Structural rearrangements underlying K+-channel activation gating. Science 285, 73–78 (1999).

    Article  CAS  Google Scholar 

  11. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L. & Miller, C. Single Streptomyces lividans K+ channels: functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114, 551–560 (1999).

    Article  CAS  Google Scholar 

  12. Liu, Y.S., Sompornpisut, P. & Perozo, E. Structure of the KcsA channel intracellular gate in the open state. Nat. Struct. Biol. 8, 883–887 (2001).

    Article  CAS  Google Scholar 

  13. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    Article  CAS  Google Scholar 

  14. Cordero-Morales, J.F. et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 13, 311–318 (2006).

    Article  CAS  Google Scholar 

  15. Valiyaveetil, F.I., Sekedat, M., MacKinnon, R. & Muir, T.W. Structural and functional consequences of an amide-to-ester substitution in the selectivity filter of a potassium channel. J. Am. Chem. Soc. 128, 11591–11599 (2006).

    Article  CAS  Google Scholar 

  16. Proks, P., Capener, C.E., Jones, P. & Ashcroft, F. Mutations within the P-loop of Kir6.2 modulates the intraburst kinetics of the ATP-sensitive potassium channel. J. Gen. Physiol. 118, 341–353 (2001).

    Article  CAS  Google Scholar 

  17. Berneche, S. & Roux, B. Energetics of ion conduction through the K+ channel. Nature 414, 73–77 (2001).

    Article  CAS  Google Scholar 

  18. MacKinnon, R., Cohen, S.L., Kuo, A., Lee, A. & Chait, B.T. Structural conversion in prokaryotic and eukaryotic potassium channels. Science 280, 106–109 (1998).

    Article  CAS  Google Scholar 

  19. Chill, J.H., Louis, J.M., Miller, C. & Bax, A. NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci. 15, 684–698 (2006).

    Article  CAS  Google Scholar 

  20. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  21. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by the K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    Article  CAS  Google Scholar 

  22. Cortes, D.M., Cuello, L.G. & Perozo, E. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J. Gen. Physiol. 117, 165–180 (2001).

    Article  CAS  Google Scholar 

  23. Cuello, L.G., Romero, J.G., Cortes, D.M. & Perozo, E. pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry 37, 3229–3236 (1998).

    Article  CAS  Google Scholar 

  24. Lu, T. et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nat. Neurosci. 4, 239–246 (2001).

    Article  CAS  Google Scholar 

  25. Wuthrich, K. NMR of Proteins and Nucleic Acids (Wiley, Indianapolis, 1986).

    Book  Google Scholar 

  26. Takeuchi, K., Takahashi, H., Kawano, S. & Shimada, I. Identification and characterization of the slowly exchanging pH-dependent conformational rearrangement in KcsA. J. Biol. Chem. 282, 15179–15186 (2007).

    Article  CAS  Google Scholar 

  27. Noskov, S.Y. & Roux, B. Ion selectivity in potassium channels. Biophys. Chem. 124, 279–291 (2006).

    Article  CAS  Google Scholar 

  28. Luzhkov, V.B. & Aqvist, J. A computational study of ion binding and protonation states in the KcsA potassium channel. Biochim. Biophys. Acta 1481, 360–370 (2000).

    Article  CAS  Google Scholar 

  29. Bucher, D., Guidoni, L. & Roethlisberger, U. The protonation state of the Glu-71/Asp-80 residues in the KcsA potassium channel. A first-principles QM/MM molecular dynamics study. Biophys. J. 93, 2315–2324 (2007).

    Article  CAS  Google Scholar 

  30. Zhou, Y. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003).

    Article  CAS  Google Scholar 

  31. VanDongen, A.M. K channel gating by an affinity-switching selectivity filter. Proc. Natl. Acad. Sci. USA 101, 3248–3252 (2004).

    Article  CAS  Google Scholar 

  32. LeMaster, D.M. & Richards, F.M. NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteriation. Biochemistry 27, 142–150 (1988).

    Article  CAS  Google Scholar 

  33. Marley, J., Lu, M. & Bracken, C. A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75 (2001).

    Article  CAS  Google Scholar 

  34. Salzmann, M., Wider, G., Pervushin, K. & Wuthrich, K. Improved sensitivity and coherence selection for [15N,1H]-TROSY elements in triple resonance experiments. J. Biomol. NMR 15, 181–184 (1999).

    Article  CAS  Google Scholar 

  35. Guntert, P., Dotsch, V., Wider, G. & Wuthrich, K. Processing of multi-dimensional NMR data with the new software PROSA. J. Biomol. NMR 2, 619–629 (1992).

    Article  Google Scholar 

Download references


This work was supported in part by the US National Institutes of Health (GM74929 and GM56653). R.R. is a Pew Scholar and the Helen McLoraine Development Chair in Neurobiology. K.A.B. would like to thank the American Heart Association for fellowship support.

Author information

Authors and Affiliations



K.A.B. and C.T. prepared KcsA; K.A.B., C.T., W.K. and R.R. collected and analyzed NMR data; K.A.B., C.T., S.C. and R.R. contributed to scientific discussions and prepared the manuscript.

Corresponding authors

Correspondence to Senyon Choe or Roland Riek.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1–3, Supplementary Methods (PDF 4761 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baker, K., Tzitzilonis, C., Kwiatkowski, W. et al. Conformational dynamics of the KcsA potassium channel governs gating properties. Nat Struct Mol Biol 14, 1089–1095 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing