Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of human DGCR8 core

Abstract

A complex of Drosha with DGCR8 (or its homolog Pasha) cleaves primary microRNA (pri-miRNA) substrates into precursor miRNA and initiates the microRNA maturation process. Drosha provides the catalytic site for this cleavage, whereas DGCR8 or Pasha provides a frame for anchoring substrate pri-miRNAs. To clarify the molecular basis underlying recognition of pri-miRNA by DGCR8 and Pasha, we determined the crystal structure of the human DGCR8 core (DGCR8S, residues 493–720). In the structure, the two double-stranded RNA–binding domains (dsRBDs) are arranged with pseudo two-fold symmetry and are tightly packed against the C-terminal helix. The H2 helix in each dsRBD is important for recognition of pri-miRNA substrates. This structure, together with fluorescent resonance energy transfer and mutational analyses, suggests that the DGCR8 core recognizes pri-miRNA in two possible orientations. We propose a model for DGCR8's recognition of pri-miRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of DGCR8S.
Figure 2: Binding of DGCR8 conserved residues, measured by EMSAs.
Figure 3: Possible model of DGCR8S–dsRNA complex.
Figure 4: RNA-binding modes of DGCR8.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  2. Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell. Biol. 6, 376–385 (2005).

    Article  CAS  Google Scholar 

  3. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  Google Scholar 

  4. Cai, X., Hagedorn, C.H. & Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).

    Article  CAS  Google Scholar 

  5. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  Google Scholar 

  6. Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  Google Scholar 

  7. Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162–2167 (2004).

    Article  CAS  Google Scholar 

  8. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  Google Scholar 

  9. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  Google Scholar 

  10. Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    Article  CAS  Google Scholar 

  11. Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  Google Scholar 

  12. Bohnsack, M.T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    Article  CAS  Google Scholar 

  13. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  Google Scholar 

  14. Ketting, R.F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    Article  CAS  Google Scholar 

  15. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    Article  CAS  Google Scholar 

  16. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  Google Scholar 

  17. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  Google Scholar 

  18. Hutvagner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    Article  CAS  Google Scholar 

  19. Olsen, P.H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    Article  CAS  Google Scholar 

  20. Court, D. RNA processing and degradation by RNase III. in Control of Messenger RNA Stability (eds. Belasco, J.G. & Braverman, G.) 71–108 (Academic Press, New York, 1993).

    Chapter  Google Scholar 

  21. Filippov, V., Solovyev, V., Filippova, M. & Gill, S.S. A novel type of RNase III family proteins in eukaryotes. Gene 245, 213–221 (2000).

    Article  CAS  Google Scholar 

  22. Zeng, Y. & Cullen, B.R. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J. Biol. Chem. 280, 27595–27603 (2005).

    Article  CAS  Google Scholar 

  23. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901 (2006).

    Article  CAS  Google Scholar 

  24. Shiohama, A., Sasaki, T., Noda, S., Minoshima, S. & Shimizu, N. Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. Biochem. Biophys. Res. Commun. 304, 184–190 (2003).

    Article  CAS  Google Scholar 

  25. Wilson, D.I., Burn, J., Scambler, P. & Goodship, J. DiGeorge syndrome: part of CATCH 22. J. Med. Genet. 30, 852–856 (1993).

    Article  CAS  Google Scholar 

  26. Tian, B., Bevilacqua, P.C., Diegelman-Parente, A. & Mathews, M.B. The double-stranded-RNA-binding motif: interference and much more. Nat. Rev. Mol. Cell Biol. 5, 1013–1023 (2004).

    Article  CAS  Google Scholar 

  27. Nanduri, S., Carpick, B.W., Yang, Y., Williams, B.R. & Qin, J. Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J. 17, 5458–5465 (1998).

    Article  CAS  Google Scholar 

  28. Gan, J. et al. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell 124, 355–366 (2006).

    Article  CAS  Google Scholar 

  29. Macrae, I.J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).

    Article  CAS  Google Scholar 

  30. Yeom, K.H., Lee, Y., Han, J., Suh, M.R. & Kim, V.N. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res. 34, 4622–4629 (2006).

    Article  CAS  Google Scholar 

  31. Wu, H., Henras, A., Chanfreau, G. & Feigon, J. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc. Natl. Acad. Sci. USA 101, 8307–8312 (2004).

    Article  CAS  Google Scholar 

  32. Ryter, J.M. & Schultz, S.C. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 17, 7505–7513 (1998).

    Article  CAS  Google Scholar 

  33. Ramos, A. et al. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J. 19, 997–1009 (2000).

    Article  CAS  Google Scholar 

  34. Faller, M., Matsunaga, M., Yin, S., Loo, J.A. & Guo, F. Heme is involved in microRNA processing. Nat. Struct. Mol. Biol. 14, 23–29 (2007).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  36. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  37. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  38. Kleywegt, G.J. & Jones, T.A. Efficient rebuilding of protein structures. Acta Crystallogr. D Biol. Crystallogr. 50, 829–832 (1996).

    Article  Google Scholar 

  39. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  40. Laskowski, R.A., MacArthur, M.W., Moss, D.A. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.S. Lee and K.H. Kim for help with the data collection (beamline PAL4A) and J.H. Yu, S. Jeong, T.H. Joo, K.Y. Choi and H. Jeon for their valuable comments. This work was supported by the National Creative Research Initiative Program (Korean Ministry of Science and Technology) and the BK21 Program.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.S. performed biochemistry, crystallization and structure determination; S.Y.S. and J.J.K. performed EMSAs and purification; J.J.K. performed analytical ultracentrifugation analysis; S.Y.S. and W.J.B. performed data collection and structure determination; K.-H.Y. and V.N.K. provided DGCR8 and pri-miR16-1; S.Y.S., V.N.K. and Y.C. designed the experiments and S.Y.S. and Y.C. wrote the paper.

Corresponding author

Correspondence to Yunje Cho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1, Supplementary Methods (PDF 4654 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, S., Bae, W., Kim, J. et al. Crystal structure of human DGCR8 core. Nat Struct Mol Biol 14, 847–853 (2007). https://doi.org/10.1038/nsmb1294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing