Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lsm proteins bind and stabilize RNAs containing 5′ poly(A) tracts

Abstract

Many orthopoxvirus messenger RNAs have an unusual nontemplated poly(A) tract of 5 to 40 residues at the 5′ end. The precise function of this feature is unknown. Here we show that 5′ poly(A) tracts are able to repress RNA decay by inhibiting 3′-to-5′ exonucleases as well as decapping of RNA substrates. UV cross-linking analysis demonstrated that the Lsm complex associates with the 5′ poly(A) tract. Furthermore, recombinant Lsm1–7 complex specifically binds 5′ poly(A) tracts 10 to 21 nucleotides in length, consistent with the length of 5′ poly(A) required for stabilization. Knockdown of Lsm1 abrogates RNA stabilization by the 5′ poly(A) tract. We propose that the Lsm complex simultaneously binds the 3′ and 5′ ends of these unusual messenger RNAs and thereby prevents 3′-to-5′ decay. The implications of this phenomenon for cellular mRNA decay are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A 5′ adenosine tract of at least 10 residues inhibits RNA decay in cells.
Figure 2: 5′ adenosine tracts block both 3′-to-5′ decay and decapping in vitro.
Figure 3: PABP and Lsm proteins associate specifically with the 5′ adenosine tract.
Figure 4: Purified recombinant Lsm complex binds specifically to RNAs bearing a 5′ adenosine tract.
Figure 5: Purified recombinant Lsm complex requires a 5′ adenosine tract of at least 10 nt.
Figure 6: Knockdown of Lsm1 blocks the ability of a 5′ adenosine tract to stabilize RNAs.
Figure 7: Lsm proteins may circularize RNAs with 5′ adenosine tracts, there by inhibiting both 3′-to-5′ and 5′-to-3′ decay.

Similar content being viewed by others

References

  1. Edmonds, M. A history of poly A sequences: from formation to factors to function. Prog. Nucleic Acid Res. Mol. Biol. 71, 285–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Coller, J.M., Gray, N.K. & Wickens, M.P. mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev. 12, 3226–3235 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gray, N.K., Coller, J.M., Dickson, K.S. & Wickens, M. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J. 19, 4723–4733 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wells, S.E., Hillner, P.E., Vale, R.D. & Sachs, A.B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Shyu, A.B., Belasco, J.G. & Greenberg, M.E. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5, 221–231 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Decker, C.J. & Parker, R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632–1643 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Tharun, S., Muhlrad, D., Chowdhury, A. & Parker, R. Mutations in the Saccharomyces cerevisiae LSM1 gene that affect mRNA decapping and 3′ end protection. Genetics 170, 33–46 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tharun, S. & Parker, R. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol. Cell 8, 1075–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. He, W. & Parker, R. The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3′ termini from partial degradation. Genetics 158, 1445–1455 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hsu, C.L. & Stevens, A. Yeast cells lacking 5′ → 3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13, 4826–4835 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukherjee, D. et al. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 21, 165–174 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raijmakers, R., Schilders, G. & Pruijn, G.J. The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. Eur. J. Cell Biol. 83, 175–183 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, H., Rodgers, N.D., Jiao, X. & Kiledjian, M. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J. 21, 4699–4708 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swaminathan, S. Post-transcriptional gene regulation by gamma herpesviruses. J. Cell. Biochem. 95, 698–711 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Rice, A.P. & Roberts, B.E. Vaccinia virus induces cellular mRNA degradation. J. Virol. 47, 529–539 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahn, B.Y. & Moss, B. Capped poly(A) leaders of variable lengths at the 5′ ends of vaccinia virus late mRNAs. J. Virol. 63, 226–232 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Patel, D.D. & Pickup, D.J. Messenger RNAs of a strongly-expressed late gene of cowpox virus contain 5′-terminal poly(A) sequences. EMBO J. 6, 3787–3794 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwer, B., Visca, P., Vos, J.C. & Stunnenberg, H.G. Discontinuous transcription or RNA processing of vaccinia virus late messengers results in a 5′ poly(A) leader. Cell 50, 163–169 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ink, B.S. & Pickup, D.J. Vaccinia virus directs the synthesis of early mRNAs containing 5′ poly(A) sequences. Proc. Natl. Acad. Sci. USA 87, 1536–1540 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baldick, C.J., Jr & Moss, B. Characterization and temporal regulation of mRNAs encoded by vaccinia virus intermediate-stage genes. J. Virol. 67, 3515–3527 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahn, B.Y., Jones, E.V. & Moss, B. Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5′ poly(A) leader on its early transcript. J. Virol. 64, 3019–3024 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. de Magistris, L. & Stunnenberg, H.G. Cis-acting sequences affecting the length of the poly(A) head of vaccinia virus late transcripts. Nucleic Acids Res. 16, 3141–3156 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bergman, N., Opyrchal, M., Bates, E.J. & Wilusz, J. Analysis of the products of mRNA decapping and 3′-to-5′ decay by denaturing gel electrophoresis. RNA 8, 959–965 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gorlach, M., Burd, C.G. & Dreyfuss, G. The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp. Cell Res. 211, 400–407 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Eystathioy, T. et al. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9, 1171–1173 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaric, B. et al. Reconstitution of two recombinant LSm protein complexes reveals aspects of their architecture, assembly, and function. J. Biol. Chem. 280, 16066–16075 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Mayes, A.E., Verdone, L., Legrain, P. & Beggs, J.D. Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J. 18, 4321–4331 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Achsel, T. et al. A doughnut-shaped heteromer of human Sm-like proteins binds to the 3′-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. EMBO J. 18, 5789–5802 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mikulecky, P.J. et al. Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat. Struct. Mol. Biol. 11, 1206–1214 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, X. & Wartell, R.M. Escherichia coli Hfq binds A18 and DsrA domain II with similar 2:1 Hfq6/RNA stoichiometry using different surface sites. Biochemistry 45, 4875–4887 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Wilusz, C.J. & Wilusz, J. Eukaryotic Lsm proteins: lessons from bacteria. Nat. Struct. Mol. Biol. 12, 1031–1036 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Folichon, M. et al. The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res. 31, 7302–7310 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohanty, B.K., Maples, V.F. & Kushner, S.R. The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol. Microbiol. 54, 905–920 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Vytvytska, O., Moll, I., Kaberdin, V.R., von Gabain, A. & Bläsi, U. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev. 14, 1109–1118 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kufel, J., Bousquet-Antonelli, C., Beggs, J.D. & Tollervey, D. Nuclear pre-mRNA decapping and 5′ degradation in yeast require the Lsm2–8p complex. Mol. Cell. Biol. 24, 9646–9657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee-Chen, G.J. & Niles, E.G. Transcription and translation mapping of the 13 genes in the vaccinia virus HindIII D fragment. Virology 163, 52–63 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Parrish, S. & Moss, B. Characterization of a vaccinia virus mutant with a deletion of the D10R gene encoding a putative negative regulator of gene expression. J. Virol. 80, 553–561 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parrish, S., Resch, W. & Moss, B. Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc. Natl. Acad. Sci. USA 104, 2139–2144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patel, G.P., Ma, S. & Bag, J. The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res. 33, 7074–7089 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dorokhov, Y.L. et al. Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc. Natl. Acad. Sci. USA 99, 5301–5306 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ford, L.P., Watson, J., Keene, J.D. & Wilusz, J. ELAV proteins stabilize deadenylated intermediates in a novel in vitro mRNA deadenylation/degradation system. Genes Dev. 13, 188–201 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilusz, J. & Shenk, T. A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell 52, 221–228 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Ford, L.P. & Wilusz, J. An in vitro system using HeLa cytoplasmic extracts that reproduces regulated mRNA stability. Methods 17, 21–27 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the US National Institutes of Health (GM72481) to J.W. B.Z. contributed to the paper while receiving Swiss National Foundation funds in the laboratory of C.K. We thank E.K.L. Chan (University of Florida) for supplying the Lsm4-specific antibodies, K. Sokoloski (Colorado State University) for the sequence of hamster Lsm1 and D. Pickup (Duke University) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.C.M.M. and N.B. performed most of the experiments and contributed to their analysis and design. N.B. initially discovered the novel role and properties of the Lsm complex, and also constructed the Lsm1-knockdown cells together with R.J.S. B.Z. and C.K. purified and reconstituted the Lsm complexes. C.J.W. wrote a large portion of the paper and contributed to experimental design and analysis. J.W. was conceived the project, was involved in design and analysis of experiments, and performed some of the electroporation studies with assistance from J.R.A.

Corresponding author

Correspondence to Jeffrey Wilusz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergman, N., Moraes, K., Anderson, J. et al. Lsm proteins bind and stabilize RNAs containing 5′ poly(A) tracts. Nat Struct Mol Biol 14, 824–831 (2007). https://doi.org/10.1038/nsmb1287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing