Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the ribosome recycling factor bound to the ribosome

Abstract

In bacteria, disassembly of the ribosome at the end of translation is facilitated by an essential protein factor termed ribosome recycling factor (RRF), which works in concert with elongation factor G. Here we describe the crystal structure of the Thermus thermophilus RRF bound to a 70S ribosomal complex containing a stop codon in the A site, a transfer RNA anticodon stem-loop in the P site and tRNAfMet in the E site. The work demonstrates that structures of translation factors bound to 70S ribosomes can be determined at reasonably high resolution. Contrary to earlier reports, we did not observe any RRF-induced changes in bridges connecting the two subunits. This suggests that such changes are not a direct requirement for or consequence of RRF binding but possibly arise from the subsequent stabilization of a hybrid state of the ribosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization of T. thermophilus RRF in the ribosome4,5,6,7.
Figure 2: RRF orientation in the ribosome.
Figure 3: RRF contacts the 70S ribosome.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hirashima, A. & Kaji, A. Purification and properties of ribosome-releasing factor. Biochemistry 11, 4037–4044 (1972).

    Article  CAS  Google Scholar 

  2. Janosi, L., Shimizu, I. & Kaji, A. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Proc. Natl. Acad. Sci. USA 91, 4249–4253 (1994).

    Article  CAS  Google Scholar 

  3. Hirashima, A. & Kaji, A. Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid. J. Biol. Chem. 248, 7580–7587 (1973).

    CAS  PubMed  Google Scholar 

  4. Selmer, M., Al-Karadaghi, S., Hirokawa, G., Kaji, A. & Liljas, A. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science 286, 2349–2352 (1999).

    Article  CAS  Google Scholar 

  5. Kim, K.K., Min, K. & Suh, S.W. Crystal structure of the ribosome recycling factor from Escherichia coli. EMBO J. 19, 2362–2370 (2000).

    Article  CAS  Google Scholar 

  6. Toyoda, T. et al. Crystal structure combined with genetic analysis of the Thermus thermophilus ribosome recycling factor shows that a flexible hinge may act as a functional switch. RNA 6, 1432–1444 (2000).

    Article  CAS  Google Scholar 

  7. Nakano, H. et al. Structure and binding mode of a ribosome recycling factor (RRF) from mesophilic bacterium. J. Biol. Chem. 278, 3427–3436 (2003).

    Article  CAS  Google Scholar 

  8. Yoshida, T. et al. Solution structure of the ribosome recycling factor from Aquifex aeolicus. Biochemistry 40, 2387–2396 (2001).

    Article  CAS  Google Scholar 

  9. Yoshida, T. et al. Characteristic domain motion in the ribosome recycling factor revealed by 15N NMR relaxation experiments and molecular dynamics simulations. Biochemistry 42, 4101–4107 (2003).

    Article  CAS  Google Scholar 

  10. Lancaster, L., Kiel, M.C., Kaji, A. & Noller, H.F. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 111, 129–140 (2002).

    Article  CAS  Google Scholar 

  11. Agrawal, R.K. et al. Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. Proc. Natl. Acad. Sci. USA 101, 8900–8905 (2004).

    Article  CAS  Google Scholar 

  12. Gao, N. et al. Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. Mol. Cell 18, 663–674 (2005).

    Article  CAS  Google Scholar 

  13. Wilson, D.N. et al. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J. 24, 251–260 (2005).

    Article  CAS  Google Scholar 

  14. Rao, A.R. & Varshney, U. Specific interaction between the ribosome recycling factor and the elongation factor G from Mycobacterium tuberculosis mediates peptidyl-tRNA release and ribosome recycling in Escherichia coli. EMBO J. 20, 2977–2986 (2001).

    Article  CAS  Google Scholar 

  15. Ito, K., Fujiwara, T., Toyoda, T. & Nakamura, Y. Elongation factor G participates in ribosome disassembly by interacting with ribosome recycling factor at their tRNA-mimicry domains. Mol. Cell 9, 1263–1272 (2002).

    Article  CAS  Google Scholar 

  16. Guo, P., Zhang, L., Zhang, H., Feng, Y. & Jing, G. Domain II plays a crucial role in the function of ribosome recycling factor. Biochem. J. 393, 767–777 (2006).

    Article  CAS  Google Scholar 

  17. Hirashima, A. & Kaji, A. Factor-dependent release of ribosomes from messenger RNA. Requirement for two heat-stable factors. J. Mol. Biol. 65, 43–58 (1972).

    Article  CAS  Google Scholar 

  18. Karimi, R., Pavlov, M.Y., Buckingham, R.H. & Ehrenberg, M. Novel roles for classical factors at the interface between translation termination and initiation. Mol. Cell 3, 601–609 (1999).

    Article  CAS  Google Scholar 

  19. Hirokawa, G. et al. Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. EMBO J. 21, 2272–2281 (2002).

    Article  CAS  Google Scholar 

  20. Peske, F., Rodnina, M.V. & Wintermeyer, W. Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol. Cell 18, 403–412 (2005).

    Article  CAS  Google Scholar 

  21. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  22. Maguire, B.A., Beniaminov, A.D., Ramu, H., Mankin, A.S. & Zimmermann, R.A. A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome. Mol. Cell 20, 427–435 (2005).

    Article  CAS  Google Scholar 

  23. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  24. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834 (2005).

    Article  CAS  Google Scholar 

  25. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    Article  CAS  Google Scholar 

  26. Ermolenko, D.N. et al. The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat. Struct. Mol. Biol. 14, 493–497 (2007).

    Article  CAS  Google Scholar 

  27. Frank, J. & Agrawal, R.K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    Article  CAS  Google Scholar 

  28. Petry, S. et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1255–1266 (2005).

    Article  CAS  Google Scholar 

  29. Schmitt, E., Panvert, M., Blanquet, S. & Mechulam, Y. Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. EMBO J. 17, 6819–6826 (1998).

    Article  CAS  Google Scholar 

  30. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  31. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  32. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Murphy for help with data collection during optimization of crystallization conditions, M. MacDonald for help with screening at beamline 14.1 at the Synchrotron Radiation Source, and R. Ravelli, J. McCarthy and G. Leonard at beamlines ID14-1, ID14-3 and ID14-4 at the ESRF for help with screening and data collection. This work was supported by the Medical Research Council (UK), the US National Institutes of Health and the Agouron Institute, and fellowships from the Austrian Academy of Sciences (A.W.), the Boehringer Ingelheim Fonds (S.P.), the American Cancer Society (C.M.D.) and the Wenner-Gren foundation (M.S.).

Author information

Authors and Affiliations

Authors

Contributions

A.W. crystallized the complex with RRF, collected and analyzed the data and wrote the paper. S.P. and C.M.D. helped with optimization of mRNA constructs, crystallization and cryoprotection conditions, helped with data collection, initial processing and model building, and gave feedback on the manuscript. M.S. cloned, expressed and purified T. thermophilus RRF, suggested crystallization of its complex with the ribosome and provided feedback on the manuscript. A.C.K. purified ribosomes and tRNA. V.R. oversaw the work and helped with writing the paper.

Corresponding author

Correspondence to V Ramakrishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3. (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weixlbaumer, A., Petry, S., Dunham, C. et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nat Struct Mol Biol 14, 733–737 (2007). https://doi.org/10.1038/nsmb1282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing