Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices

Abstract

The regulatory (R) region of the cystic fibrosis transmembrane conductance regulator (CFTR) is intrinsically disordered and must be phosphorylated at multiple sites for full CFTR channel activity, with no one specific phosphorylation site required. In addition, nucleotide binding and hydrolysis at the nucleotide-binding domains (NBDs) of CFTR are required for channel gating. We report NMR studies in the absence and presence of NBD1 that provide structural details for the isolated R region and its interaction with NBD1 at residue-level resolution. Several sites in the R region with measured fractional helical propensity mediate interactions with NBD1. Phosphorylation reduces the helicity of many R-region sites and reduces their NBD1 interactions. This evidence for a dynamic complex with NBD1 that transiently engages different sites of the R region suggests a structural explanation for the dependence of CFTR activity on multiple PKA phosphorylation sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: R-region phosphorylation.
Figure 2: Structural properties of the free R region.
Figure 3: Interaction of the R region with NBD1.
Figure 4: Analysis of R-region interactions with NBD1.
Figure 5: Schematic illustrating how phosphorylation-induced structural changes in the R region lead to a redistribution of binding equilibria with various regulatory interaction partners.

Similar content being viewed by others

References

  1. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1072 (1989).

    Article  CAS  Google Scholar 

  2. Dawson, R.J. & Locher, K.P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006).

    Article  CAS  Google Scholar 

  3. Ostedgaard, L.S., Baldursson, O., Vermeer, D.W., Welsh, M.J. & Robertson, A.D. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Proc. Natl. Acad. Sci. USA 97, 5657–5662 (2000).

    Article  CAS  Google Scholar 

  4. Dulhanty, A.M. & Riordan, J.R. Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator. Biochemistry 33, 4072–4079 (1994).

    Article  CAS  Google Scholar 

  5. Smith, P.C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002).

    Article  CAS  Google Scholar 

  6. Lewis, H.A. et al. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J. 23, 282–293 (2004).

    Article  CAS  Google Scholar 

  7. Rich, D.P. et al. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. J. Biol. Chem. 268, 20259–20267 (1993).

    CAS  PubMed  Google Scholar 

  8. Chang, X.B. et al. Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites. J. Biol. Chem. 268, 11304–11311 (1993).

    CAS  PubMed  Google Scholar 

  9. Cheng, S.H. et al. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66, 1027–1036 (1991).

    Article  CAS  Google Scholar 

  10. Wilkinson, D.J. et al. CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain. Am. J. Physiol. 273, L127–L133 (1997).

    CAS  PubMed  Google Scholar 

  11. Vais, H., Zhang, R. & Reenstra, W.W. Dibasic phosphorylation sites in the R domain of CFTR have stimulatory and inhibitory effects on channel activation. Am. J. Physiol. Cell Physiol. 287, C737–C745 (2004).

    Article  CAS  Google Scholar 

  12. Baldursson, O., Ostedgaard, L.S., Rokhlina, T., Cotten, J.F. & Welsh, M.J. Cystic fibrosis transmembrane conductance regulator Cl- channels with R domain deletions and translocations show phosphorylation-dependent and -independent activity. J. Biol. Chem. 276, 1904–1910 (2001).

    Article  CAS  Google Scholar 

  13. Xie, J. et al. A short segment of the R domain of cystic fibrosis transmembrane conductance regulator contains channel stimulatory and inhibitory activities that are separable by sequence modification. J. Biol. Chem. 277, 23019–23027 (2002).

    Article  CAS  Google Scholar 

  14. Csanady, L. et al. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. J. Gen. Physiol. 116, 477–500 (2000).

    Article  CAS  Google Scholar 

  15. Winter, M.C. & Welsh, M.J. Stimulation of CFTR activity by its phosphorylated R domain. Nature 389, 294–296 (1997).

    Article  CAS  Google Scholar 

  16. Wright, P.E. & Dyson, H.J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999).

    Article  CAS  Google Scholar 

  17. Romero, P. et al. Sequence complexity of disordered protein. Proteins 42, 38–48 (2001).

    Article  CAS  Google Scholar 

  18. Dunker, A.K., Obradovic, Z., Romero, P., Garner, E.C. & Brown, C.J. Intrinsic protein disorder in complete genomes. Genome Inform. Ser. Workshop Genome Inform. 11, 161–171 (2000).

    CAS  Google Scholar 

  19. Iakoucheva, L.M., Brown, C.J., Lawson, J.D., Obradovic, Z. & Dunker, A.K. Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323, 573–584 (2002).

    Article  CAS  Google Scholar 

  20. Haynes, C. et al. Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput. Biol. 2, e100 (2006).

    Article  Google Scholar 

  21. Gadsby, D.C. & Nairn, A.C. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol. Rev. 79, S77–S107 (1999).

    Article  CAS  Google Scholar 

  22. Dyson, H.J. & Wright, P.E. Nuclear magnetic resonance methods for elucidation of structure and dynamics in disordered states. Methods Enzymol. 339, 258–270 (2001).

    Article  CAS  Google Scholar 

  23. Bienkiewicz, E.A. & Lumb, K.J. Random-coil chemical shifts of phosphorylated amino acids. J. Biomol. NMR 15, 203–206 (1999).

    Article  CAS  Google Scholar 

  24. Neville, D.C. et al. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci. 6, 2436–2445 (1997).

    Article  CAS  Google Scholar 

  25. Townsend, R.R., Lipniunas, P.H., Tulk, B.M. & Verkman, A.S. Identification of protein kinase A phosphorylation sites on NBD1 and R domains of CFTR using electrospray mass spectrometry with selective phosphate ion monitoring. Protein Sci. 5, 1865–1873 (1996).

    Article  CAS  Google Scholar 

  26. Marsh, J.A., Singh, V.K., Jia, Z. & Forman-Kay, J.D. Sensitivity of secondary structure propensities to sequence differences between alpha and gamma synuclein: implications for fibrillation. Protein Sci. 15, 2795–2804 (2006).

    Article  CAS  Google Scholar 

  27. Andrew, C.D., Warwicker, J., Jones, G.R. & Doig, A.J. Effect of phosphorylation on alpha-helix stability as a function of position. Biochemistry 41, 1897–1905 (2002).

    Article  CAS  Google Scholar 

  28. Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  29. Schwalbe, H. et al. Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry 36, 8977–8991 (1997).

    Article  CAS  Google Scholar 

  30. Cohn, J.A., Nairn, A.C., Marino, C.R., Melhus, O. & Kole, J. Characterization of the cystic fibrosis transmembrane conductance regulator in a colonocyte cell line. Proc. Natl. Acad. Sci. USA 89, 2340–2344 (1992).

    Article  CAS  Google Scholar 

  31. Picciotto, M.R., Cohn, J.A., Bertuzzi, G., Greengard, P. & Nairn, A.C. Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 267, 12742–12752 (1992).

    CAS  PubMed  Google Scholar 

  32. Lewis, H.A. et al. Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J. Biol. Chem. 280, 1346–1353 (2005).

    Article  CAS  Google Scholar 

  33. Thibodeau, P.H., Brautigam, C.A., Machius, M. & Thomas, P.J. Side chain and backbone contributions of Phe508 to CFTR folding. Nat. Struct. Mol. Biol. 12, 10–16 (2005).

    Article  CAS  Google Scholar 

  34. Csanady, L. et al. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA. J. Gen. Physiol. 125, 171–186 (2005).

    Article  CAS  Google Scholar 

  35. Dyson, H.J. & Wright, P.E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54–60 (2002).

    Article  CAS  Google Scholar 

  36. Pawson, T. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    Article  CAS  Google Scholar 

  37. Fuxreiter, M., Simon, I., Friedrich, P. & Tompa, P. Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338, 1015–1026 (2004).

    Article  CAS  Google Scholar 

  38. Oldfield, C.J. et al. Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44, 12454–12470 (2005).

    Article  CAS  Google Scholar 

  39. Howell, L.D. et al. Protein kinase A regulates ATP hydrolysis and dimerization by a cystic fibrosis transmembrane conductance regulator (CFTR) domain. Biochem. J. 378, 151–159 (2004).

    Article  CAS  Google Scholar 

  40. Mense, M. et al. In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J. 25, 4728–4739 (2006).

    Article  CAS  Google Scholar 

  41. Csanady, L., Chan, K.W., Nairn, A.C. & Gadsby, D.C. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. J. Gen. Physiol. 125, 43–55 (2005).

    Article  CAS  Google Scholar 

  42. Ma, J., Zhao, J., Drumm, M.L., Xie, J. & Davis, P.B. Function of the R domain in the cystic fibrosis transmembrane conductance regulator chloride channel. J. Biol. Chem. 272, 28133–28141 (1997).

    Article  CAS  Google Scholar 

  43. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  Google Scholar 

  44. Pufall, M.A. et al. Variable control of Ets-1 DNA binding by multiple phosphates in an unstructured region. Science 309, 142–145 (2005).

    Article  CAS  Google Scholar 

  45. Naren, A.P. CFTR chloride channel regulation by an interdomain interaction. Science 286, 544–548 (1999).

    Article  CAS  Google Scholar 

  46. Ko, S.B. et al. Gating of CFTR by the STAS domain of SLC26 transporters. Nat. Cell Biol. 6, 343–350 (2004).

    Article  CAS  Google Scholar 

  47. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  48. Kanelis, V., Forman-Kay, J.D. & Kay, L.E. Multidimensional NMR methods for protein structure determination. IUBMB Life 52, 291–302 (2001).

    Article  CAS  Google Scholar 

  49. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  50. Johnson, B.A. & Blevins, R.A. NMRView—a computer program for the visualization and analysis of NMR data. J. Biol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Muhandiram and L.E. Kay for technical assistance with NMR experiments, D.F. Hansen for assistance with NMR data analysis using Fuda, C.E. Bear and T. Mittag for many helpful discussions, and J.W. Hanrahan for critically reading the manuscript. This work was funded by grants from the Canadian Cystic Fibrosis Foundation and the Canadian Institutes of Health Research to J.D.F.-K. and from the US National Institutes of Health (DK49835) and the Robert Welch Foundation to P.J.T. J.M.R.B. was supported by scholarships from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

J.M.R.B. designed experiments, expressed and purified R region, performed NMR experiments, analyzed data and wrote the manuscript; R.P.H. expressed and purified NBD1; V.K. analyzed data; W.-Y.C. analyzed NMR data; P.H.T. generated the NBD1 construct and advised on NBD1 purification; P.J.T. contributed new reagents and analyzed data; J.D.F.-K. directed the study, designed experiments and wrote the manuscript. All the authors edited the manuscript.

Corresponding author

Correspondence to Julie D Forman-Kay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1 and 2. (PDF 398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, J., Hudson, R., Kanelis, V. et al. CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14, 738–745 (2007). https://doi.org/10.1038/nsmb1278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing