Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization

Abstract

Aquaporin (AQP) folding in the endoplasmic reticulum is characterized by two distinct pathways of membrane insertion that arise from divergent residues within the second transmembrane segment. We now show that in AQP1 these residues (Asn49 and Lys51) interact with Asp185 at the C terminus of TM5 to form a polar, quaternary structural motif that influences multiple stages of folding. Asn49 and Asp185 form an intramolecular hydrogen bond needed for proper helical packing, monomer formation and function. In contrast, Lys51 interacts with Asp185 on an adjacent monomer to stabilize the AQP1 tetramer. Although these residues are unique to AQP1, they share a highly conserved architecture whose functional properties can be transferred to other family members. These findings suggest a general mechanism by which evolutionary divergence of membrane proteins can confer new functional properties via alternative folding pathways that give rise to a common final structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AQP1 biogenesis model and crystal structure.
Figure 2: Effect of Asn49 and Lys51 on TM2 topology.
Figure 3: Functional complementation of Asn49, Lys51 and Asp185 in AQP1 and AQP4.
Figure 4: Asn49, Lys51 and Asp185 form a tripartite motif of intra- and intermolecular polar interactions.
Figure 5: Role of TM2-TM5 interactions in AQP processing and tetramerization.
Figure 6: TM2-TM5 interactions contribute to AQP tetramer stability and specificity.
Figure 7: Conserved architecture of AQP tetramerization motif.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Alder, N.N. & Johnson, A. Cotranslational membrane protein biogenesis at the endoplasmic reticulum. J. Biol. Chem. 279, 22787–22790 (2004).

    Article  CAS  Google Scholar 

  2. Higy, M., Junne, T. & Spiess, M. Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry 43, 12716–12722 (2004).

    Article  CAS  Google Scholar 

  3. Pitonzo, D. & Skach, W. Molecular mechanisms of aquaporin biogenesis by the endoplasmic reticulum Sec61 translocon. Biochim. Biophys. Acta. 1758, 976–988 (2006).

    Article  CAS  Google Scholar 

  4. Osborne, A.R., Rapoport, T.A. & van den Berg, B. Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529–550 (2005).

    Article  CAS  Google Scholar 

  5. Skach, W.R. & Lingappa, V. Amino terminus assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences. J. Biol. Chem. 268, 23552–23561 (1993).

    CAS  PubMed  Google Scholar 

  6. Heinrich, S.U. & Rapoport, T. Cooperation of transmembrane segments during integration of a double-spanning protein into the ER membrane. EMBO J. 22, 3654–3663 (2003).

    Article  CAS  Google Scholar 

  7. Sadlish, H., Pitonzo, D., Johnson, A.E. & Skach, W.R. Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 12, 870–878 (2005).

    Article  CAS  Google Scholar 

  8. McCormick, P.J., Miao, Y., Shao, Y., Lin, J. & Johnson, A. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell 12, 329–341 (2003).

    Article  CAS  Google Scholar 

  9. Popot, J.L. & Engelman, D. Helical membrane protein folding, stability and evolution. Annu. Rev. Biochem. 69, 881–922 (2000).

    Article  CAS  Google Scholar 

  10. Bowie, J.U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    Article  CAS  Google Scholar 

  11. Booth, P.J. & High, S. Polytopic membrane protein folding and assembly in vitro and in vivo. Mol. Membr. Biol. 21, 163–170 (2004).

    Article  CAS  Google Scholar 

  12. Gratkowski, H., Lear, J. & DeGrado, W. Polar side chains drive the association of model transmembrane peptides. Proc. Natl. Acad. Sci. USA 98, 880–885 (2001).

    Article  CAS  Google Scholar 

  13. Zhou, F.X., Cocco, M., Russ, W., Brunger, A. & Engelman, D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat. Struct. Biol. 7, 154–160 (2000).

    Article  CAS  Google Scholar 

  14. Sui, H., Han, B.-G., Lee, J., Walian, P. & Jap, B. Structural basis of water specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

    Article  CAS  Google Scholar 

  15. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000).

    Article  CAS  Google Scholar 

  16. Savage, D.F., Egea, P., Robles-Colmenares, Y., O'Connell, J.D. & Stroud, R. Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of aquaporin Z. PLoS Biol. 1, E72 (2003).

    Article  Google Scholar 

  17. Harries, W.E. et al. The channel architecture of aquaporin 0 at a 2.2-Å resolution. Proc. Natl. Acad. Sci. USA 101, 14045–14050 (2004).

    Article  CAS  Google Scholar 

  18. King, L.S., Kozono, D. & Agre, P. From structure to disease, the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5, 687–698 (2004).

    Article  CAS  Google Scholar 

  19. Fujiyoshi, Y. et al. Structure and function of water channels. Curr. Opin. Struct. Biol. 12, 509–515 (2002).

    Article  CAS  Google Scholar 

  20. Verkman, A.S. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci. 118, 3225–3232 (2005).

    Article  CAS  Google Scholar 

  21. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    Article  CAS  Google Scholar 

  22. Manley, D.M. et al. Secondary structure and oligomerization of the E. coli glycerol transporter. Biochemistry 39, 12303–12311 (2000).

    Article  CAS  Google Scholar 

  23. Roudier, N. et al. Erythroid expression and oligomeric state of the AQP3 protein. J. Biol. Chem. 277, 7664–7669 (2002).

    Article  CAS  Google Scholar 

  24. Verbavatz, J.M. et al. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes. A freeze-fracture study. J. Cell Biol. 123, 605–618 (1993).

    Article  CAS  Google Scholar 

  25. Van Hoek, A.N. et al. Purification and structure-function analysis of native, PNGase F-treated, and endo-β-galactosidase-treated CHIP28 water channels. Biochemistry 34, 2212–2219 (1995).

    Article  CAS  Google Scholar 

  26. Nielsen, S. & Agre, P. The aquaporin family of water channels in the kidney. Kidney Int. 48, 1057–1068 (1995).

    Article  CAS  Google Scholar 

  27. Brown, D., Katsura, T., Kawashima, M., Verkman, A. & Sabolic, I. Cellular distribution of the aquaporins: a family of water channel proteins. Histochem. Cell Biol. 104, 1–9 (1995).

    Article  CAS  Google Scholar 

  28. Duchesne, L. et al. Role of C-terminal domain and transmembrane helices 5 and 6 in function and quaternary structure of major intrinsic proteins: analysis of aquaporin/glycerol facilitator chimeric proteins. J. Biol. Chem. 277, 20598–20604 (2002).

    Article  CAS  Google Scholar 

  29. Lagrée, V. et al. Oligomerization state of water channels and glycerol facilitators. Involvement of loop E. J. Biol. Chem. 273, 33949–33953 (1998).

    Article  Google Scholar 

  30. Shi, L.-B., Skach, W., Ma, T. & Verkman, A. Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry 34, 8250–8256 (1995).

    Article  CAS  Google Scholar 

  31. Foster, W. et al. Identification of sequence determinants that direct different intracellular folding pathways for AQP1 and AQP4. J. Biol. Chem. 275, 34157–34165 (2000).

    Article  CAS  Google Scholar 

  32. Skach, W.R. et al. Biogenesis and transmembrane topology of the CHIP28 water channel in the endoplasmic reticulum. J. Cell Biol. 125, 803–815 (1994).

    Article  CAS  Google Scholar 

  33. Lu, Y. et al. Reorientation of Aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol. Biol. Cell 11, 2973–2985 (2000).

    Article  CAS  Google Scholar 

  34. Buck, T.M. & Skach, W. Differential stability of biogenesis intermediates reveals a common pathway for aquaporin-1 topological maturation. J. Biol. Chem. 280, 261–269 (2005).

    Article  CAS  Google Scholar 

  35. Heijne, G.V. The distribution of positively charged residues in bacterial inner membrane proteins correlates with trans-membrane topology. EMBO J. 5, 3021–3027 (1986).

    Article  CAS  Google Scholar 

  36. Preston, G.M., Jung, J., Guggino, W. & Agre, P. Membrane topology of aquaporin CHIP—analysis of functional epitope-scanning mutants by vectorial proteolysis. J. Biol. Chem. 269, 1668–1673 (1994).

    CAS  PubMed  Google Scholar 

  37. Partridge, A.W., Therien, A.G. & Deber, C.M. Missense mutations in transmembrane domains of proteins: phenotypic propensity of polar residues for human disease. Proteins 54, 648–656 (2004).

    Article  CAS  Google Scholar 

  38. Sanders, C.R. & Myers, J. Disease-related misassembly of membrane proteins. Annu. Rev. Biophys. Biomol. Struct. 33, 25–51 (2004).

    Article  CAS  Google Scholar 

  39. Johnson, A.E. & van Waes, M. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799–842 (1999).

    Article  Google Scholar 

  40. Sadlish, H. & Skach, W. Biogenesis of CFTR and other polytopic membrane proteins; new roles for the ribosome-translocon complex. J. Membr. Biol. 202, 115–126 (2004).

    Article  CAS  Google Scholar 

  41. White, S.H. & Wimley, W. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999).

    Article  CAS  Google Scholar 

  42. Choma, C., Gratowski, H., Lear, J. & DeGrado, W. Asparagine-mediated self-association of a model transmembrane helix. Nat. Struct. Biol. 7, 161–166 (2000).

    Article  CAS  Google Scholar 

  43. Meindl-Beinker, N.M., Lundin, C., Nilsson, I., White, S. & von Heijne, G. Asn- and Asp-mediated interactions between transmembrane helices during translocon-mediated membrane protein assembly. EMBO Rep. 7, 1111–1116 (2006).

    Article  CAS  Google Scholar 

  44. Oberdorf, J., Pitonzo, D. & Skach, W. An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery. J. Biol. Chem. 280, 38193–38202 (2005).

    Article  CAS  Google Scholar 

  45. Robinson, J.M. & Deutsch, C. Coupled tertiary folding and oligomerization of the T1 domain of Kv channels. Neuron 45, 223–232 (2005).

    Article  CAS  Google Scholar 

  46. Mathai, J.C. & Agre, P. Hourglass pore-forming domains restrict aquaporin-1 tetramer assembly. Biochemistry 38, 923–928 (1999).

    Article  CAS  Google Scholar 

  47. Ren, G., Reddy, V., Shcne, A., Melnyk, P. & Mitra, A. Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc. Natl. Acad. Sci. USA 98, 1398–1403 (2001).

    Article  CAS  Google Scholar 

  48. Gonen, T. et al. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193–197 (2004).

    Article  CAS  Google Scholar 

  49. Hiroaki, Y. et al. Implications of the aquaporin-4 structure on array formation and cell adhesion. J. Mol. Biol. 355, 628–639 (2006).

    Article  CAS  Google Scholar 

  50. de Groot, B.L., Engel, A. & Grubmueller, H. A refined structure of human aquaporin-1. FEBS Lett. 504, 206–211 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Larabee for his expert technical assistance, and L. Musil, D. Koop, C. Enns and S.-L. Shyng and members of the Skach laboratory for their valuable advice and comments. This work was supported by US National Institutes of Health grants GM53457 (W.R.S.), DK51818 (W.R.S.) and T32HL07781 (T.M.B.).

Author information

Authors and Affiliations

Authors

Contributions

T.M.B. generated cDNA constructs, performed protease and coimmunoprecipitation experiments, sucrose-gradient analyses and most oocyte functional studies. J.W. contributed to cDNA cloning and performed functional oocyte studies. S.G. performed oocyte expression and coimmunoprecipitation studies. W.R.S. directed the study, designed experiments, wrote the manuscript (with T.M.B.) and analyzed AQP structures.

Corresponding author

Correspondence to William R Skach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4 (PDF 554 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buck, T., Wagner, J., Grund, S. et al. A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization. Nat Struct Mol Biol 14, 762–769 (2007). https://doi.org/10.1038/nsmb1275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing