Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI

Abstract

Type II topoisomerases help disentangle chromosomes to facilitate cell division. To advance understanding of the structure and dynamics of these essential enzymes, we have determined the crystal structure of an archaeal type IIB topoisomerase, topo VI, at 4.0-Å resolution. The 220-kDa heterotetramer adopts a 'twin-gate' architecture, in which a pair of ATPase domains at one end of the enzyme is poised to coordinate DNA movements into the enzyme and through a set of DNA-cleaving domains at the other end. Small-angle X-ray scattering studies show that nucleotide binding elicits a major structural reorganization that is propagated to the enzyme's DNA-cleavage center, explaining how ATP is coupled to DNA capture and strand scission. These data afford important insights into the mechanisms of topo VI and related proteins, including type IIA topoisomerases and the Spo11 meiotic recombination endonuclease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General features of type IIA and IIB topoisomerases.
Figure 2: Structure of topo VI.
Figure 3: Structure of the B subunit CTD.
Figure 4: SAXS profiles of S. shibatae topo VI in apo and ATP-bound states.
Figure 5: Modeling apo– and ATP-bound S. shibatae topo VI on the basis of SAXS and EM.
Figure 6: Proposed ATPase–strand passage cycle of topo VI.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Champoux, J.J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, J.C. Cellular roles of topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, J.C. Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q. Rev. Biophys. 31, 107–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Corbett, K.D. & Berger, J.M. Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu. Rev. Biophys. Biomol. Struct. 33, 95–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Gadelle, D., Filee, J., Buhler, C. & Forterre, P. Phylogenomics of type II DNA topoisomerases. Bioessays 25, 232–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Bergerat, A. et al. An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 386, 414–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Keeney, S., Giroux, C.N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Nichols, M.D., DeAngelis, K., Keck, J.L. & Berger, J.M. Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. EMBO J. 18, 6177–6188 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aravind, L., Leipe, D.D. & Koonin, E.V. Toprim: A conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 26, 4205–4213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dutta, R. & Inouye, M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25, 24–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Wigley, D.B., Davies, G.J., Dodson, E.J., Maxwell, A. & Dodson, G. Crystal structure of an amino-terminal fragment of the DNA gyrase B protein. Nature 351, 624–629 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Corbett, K.D. & Berger, J.M. Structural dissection of ATP turnover in the prototypical GHL ATPase topo VI. Structure 13, 873–882 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Corbett, K.D. & Berger, J.M. Structure of the topoisomerase VI B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J. 22, 151–163 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roca, J. & Wang, J.C. The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerases. Cell 71, 833–840 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Buhler, C., Lebbink, J.H.G., Bocs, C., Ladenstein, R. & Forterre, P. DNA topoisomerase VI generates ATP-dependent double-strand breaks with two-nucleotide overhangs. J. Biol. Chem. 276, 37215–37222 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Baird, C.L., Harkins, T.T., Morris, S.K. & Lindsley, J.E. Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc. Natl. Acad. Sci. USA 96, 13685–13690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roca, J. & Wang, J.C. DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate mechanism. Cell 77, 609–616 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Berger, J.M., Gamblin, S.J., Harrison, S.C. & Wang, J.C. Structure and mechanism of DNA topoisomerase II. Nature 379, 225–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242, 309–320 (1994).

    CAS  PubMed  Google Scholar 

  20. Xu, G.Y. et al. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry 34, 6993–7009 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Jenner, L., Husted, L., Thirup, S., Sottrup-Jensen, L. & Nyborg, J. Crystal structure of the receptor-binding domain of a 2-macroglobulin. Structure 6, 595–604 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Reece, R.J. & Maxwell, A. The C-terminal domain of the Escherichia coli DNA gyrase A subunit is a DNA-binding protein. Nucleic Acids Res. 19, 1399–1405 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corbett, K.D., Schoeffler, A.J., Thomsen, N.D. & Berger, J.M. The structural basis for substrate specificity in DNA topoisomerase IV. J. Mol. Biol. 351, 545–561 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Corbett, K.D., Shultzaberger, R.K. & Berger, J.M. The C-terminal domain of DNA gyrase A adopts a DNA-bending β-pinwheel fold. Proc. Natl. Acad. Sci. USA 101, 7293–7298 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ward, D. & Newton, A. Requirement of topoisomerase IV parC and parE genes for cell cycle progression and developmental regulation in Caulobacter crescentus. Mol. Microbiol. 26, 897–910 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Crisona, N.J., Strick, T.R., Bensimon, D., Croquette, V. & Cozzarelli, N.R. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–2892 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng, H. & Marians, K.J. The interaction of Escherichia coli topoisomerase IV with DNA. J. Biol. Chem. 270, 25286–25290 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, S.C. & Shapiro, L. The topoisomerase IV ParC subunit colocalizes with the Caulobacter replisome and is required for polar localization of replication origins. Proc. Natl. Acad. Sci. USA 101, 9251–9256 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Espeli, O., Lee, C. & Marians, K.J. A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV. J. Biol. Chem. 278, 44639–44644 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Svergun, D.I. & Koch, M.H.J. Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 66, 1735–1782 (2003).

    Article  CAS  Google Scholar 

  31. Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 25, 495–503 (1992).

    Article  CAS  Google Scholar 

  32. Svergun, D.I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kozin, M.B. & Svergun, D.I. Automated matching of high- and low-resolution structural models. J. Appl. Cryst. 34, 33–41 (2001).

    Article  CAS  Google Scholar 

  34. Svergun, D.I., Barberato, C. & Koch, M.H.J. CRYSOL - a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

  35. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. & Svergun, D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Cryst. 36, 1277–1282 (2003).

    Article  CAS  Google Scholar 

  36. Buhler, C., Gadelle, D., Forterre, P., Wang, J.C. & Bergerat, A. Reconstitution of DNA topoisomerase VI of the thermophilic archaeon Sulfolobus shibatae from subunits separately overexpressed in Escherichia coli. Nucleic Acids Res. 26, 5157–5162 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morais Cabral, J.H. et al. Crystal structure of the breakage-reunion domain of DNA gyrase. Nature 388, 903–906 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Tingey, A.P. & Maxwell, A. Probing the role of the ATP-operated clamp in the strand-passage reaction of DNA gyrase. Nucleic Acids Res. 24, 4868–4873 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Williams, N.L., Howells, A.J. & Maxwell, A. Locking the ATP-operated clamp of DNA gyrase: probing the mechanism of strand passage. J. Mol. Biol. 306, 969–984 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Lamour, V., Hoermann, L., Jeltsch, J-M., Oudet, P. & Moras, D. An open conformation of the Thermus thermophilus gyrase B ATP-binding domain. J. Biol. Chem. 277, 18947–18953 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Wei, H., Ruthenburg, A.J., Bechis, S.K. & Verdine, G.L. Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. J. Biol. Chem. 280, 37041–37047 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Morrison, A. & Cozzarelli, N.R. Site-specific cleavage of DNA by E. coli DNA gyrase. Cell 17, 175–184 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Sander, M. & Hsieh, T. Double strand DNA cleavage by type II DNA topoisomerase from Drosophila melanogaster. J. Biol. Chem. 258, 8421–8428 (1983).

    CAS  PubMed  Google Scholar 

  44. Roca, J. The path of the DNA along the dimer interface of topoisomerase II. J. Biol. Chem. 279, 25783–25788 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Trigueros, S., Salceda, J., Bermudez, I., Fernandez, X. & Roca, J. Asymmetric removal of supercoils suggests how topoisomerase II simplifies DNA topology. J. Mol. Biol. 335, 723–731 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Rybenkov, V.V., Ullsperger, C., Vologodskii, A.V. & Cozzarelli, N.R. Simplification of DNA topology below equilibrium values by type II topoisomerases. Science 277, 690–693 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Keeney, S. & Neale, M.J. Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem. Soc. Trans. 34, 523–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Nag, D.K., Pata, J.D., Sironi, M., Flood, D.R. & Hart, A.M. Both conserved and non-conserved regions of Spo11 are essential for meiotic recombination initiation in yeast. Mol. Genet. Genomics 276, 313–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Tan, S. A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. Protein Expr. Purif. 21, 224–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Kapust, R.B. & Waugh, D.S. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8, 1668–1674 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. MacDowell, A.A. et al. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source. J. Synchrotron Radiat. 11, 447–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Benedetti, P., Silvestri, A., Fiorani, P. & Wang, J.C. Study of yeast DNA topoisomerase II and its truncation derivatives by transmission electron microscopy. J. Biol. Chem. 272, 12132–12137 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Kirchhausen, T., Wang, J.C. & Harrison, S.C. DNA gyrase and its complexes with DNA: direct observation by electron microscopy. Cell 41, 933–943 (1985).

    Article  CAS  PubMed  Google Scholar 

  54. Tyler, J.M. & Branton, D. Rotary shadowing of extended molecules dried from glycerol. J. Ultrastruct. Res. 71, 95–102 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Nicholas R. Cozzarelli, who provided invaluable advice and criticism to both K.D.C. and J.M.B. over many years. The authors thank J. Holton, G. Meigs and J. Tanamachi for assistance at ALS beamline 8.3.1, G. Hura and D. S. Classen for assistance at ALS beamline 12.3.1, A. Bergerat and J. Wang (Harvard University) for the gift of S. shibatae topo VI subunits, M. Nollmann for advice on SAXS methodology, and members of the Berger laboratory for helpful advice. J.M.B. acknowledges support from the US National Cancer Institute (CA077373), and P.B. acknowledges support from the Ministero dell'Instruzione, dell'Università e della Ricerca Cofinanziamento, Fondo Investimenti Ricerca di Base, Ministero della Salute and Genomica Funzionale Consiglio Nazionale delle Ricerche.

Author information

Authors and Affiliations

Authors

Contributions

K.D.C. performed all experiments, with the exception of the EM, which was performed by P.B. K.D.C. and J.M.B. devised all experiments and prepared the manuscript together, with editorial assistance from P.B.

Note: Supplementary information is available on the Nature Structural & Molecular Biology website.

Corresponding author

Correspondence to James M Berger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Biochemical characterization of M. mazei topo VI. (PDF 620 kb)

Supplementary Fig. 2

Experimental and refined electron density maps. (PDF 1560 kb)

Supplementary Fig. 3

Sequence alignments. (PDF 208 kb)

Supplementary Figs. 4

Cross-linking of SsT6S424C. (PDF 597 kb)

Supplementary Fig. 5

Nucleotide addition to SsT6 results in a mixture of conformational states. (PDF 87 kb)

Supplementary Fig. 6

DAMMIN models of ATP-SsT6S424C. (PDF 1122 kb)

Supplementary Fig. 7

Manual modeling of ATP-SsT6S424C. (PDF 630 kb)

Supplementary Fig. 8

MmT6 does not simplify DNA topology below thermodynamic equilibrium. (PDF 250 kb)

Supplementary Video 1

Different conformational states of topo VI and proposed strand passage mechanism. The movie begins with the partially closed conformation of MmT6 observed in the crystal structure, transitions to the open state observed in the apo-SsT6 SAXS sample, then transitions to the fully-closed state observed in the ATP-SsT6S424C SAXS sample and also based on the structure of the nucleotide-mediated S. shibatae topo VI B-subunit dimer1. Subsequently, a proposed strand passage reaction is modeled based on these states and on the nucleotide-mediated transducer domain motion observed in previous structures of the S. shibatae topo VI B-subunit2. In the movie, the B-subunit GHKL and H2TH domains are colored yellow, the transducer domain orange, the A-subunit CAP domains green, Toprim domains blue, and G- and T-segment DNAs magenta and cyan, respectively. (MOV 6222 kb)

Corbett, K.D. & Berger, J.M. Structure of the topoisomerase VI B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J. 22, 151-163 (2003).

Corbett, K.D. & Berger, J.M. Structural dissection of ATP turnover in the prototypical GHL ATPase topo VI. Structure 13, 873-882 (2005).

Supplementary Methods (PDF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbett, K., Benedetti, P. & Berger, J. Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI. Nat Struct Mol Biol 14, 611–619 (2007). https://doi.org/10.1038/nsmb1264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing