Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation

This article has been updated

Abstract

(A+U)-rich elements (AREs) within 3′ untranslated regions are signals for rapid degradation of messenger RNAs encoding many oncoproteins and cytokines. The ARE-binding protein AUF1 contributes to their degradation. We identified MYC proto-oncogene mRNA as a cellular AUF1 target. Levels of MYC translation and cell proliferation were proportional to AUF1 abundance but inversely proportional to the abundance of the ARE-binding protein TIAR, a MYC translational suppressor. Both AUF1 and TIAR affected MYC translation via the ARE without affecting mRNA abundance. Altering association of one ARE-binding protein with MYC mRNA in vivo reciprocally affected mRNA association with the other protein. Finally, genetic experiments revealed that AUF1 and TIAR control proliferation by a MYC-dependent pathway. Together, these observations suggest a novel regulatory mechanism where tuning the ratios of AUF1 and TIAR bound to MYC mRNA permits dynamic control of MYC translation and cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of AUF1 abundance on MYC expression.
Figure 2: AUF1 affects translation via the MYC ARE.
Figure 3: AUF1 abundance affects polyribosome distribution of MYC mRNA.
Figure 4: Effects of AUF1 and TIAR on MYC expression and mRNA association.
Figure 5: Effects of AUF1 or TIAR overexpression on ARE association.
Figure 6: AUF1 controls cellular proliferation.
Figure 7: Model for AUF1 control of MYC translation.

Similar content being viewed by others

Change history

  • 21 May 2007

    fixed y axis of figure 2b

Notes

  1. *NOTE: In the version of this article initially published online, the y-axis label in Figure 2b is incorrect. The correct label should be Luc activity. The error has been corrected for all versions of the article.

References

  1. Tenenbaum, S.A., Carson, C.C., Lager, P.J. & Keene, J.D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl. Acad. Sci. USA 97, 14085–14090 (2000).

    Article  CAS  Google Scholar 

  2. Keene, J.D. & Tenenbaum, S.A. Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell 9, 1161–1167 (2002).

    Article  CAS  Google Scholar 

  3. Chen, C.Y. & Shyu, A.B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470 (1995).

    Article  CAS  Google Scholar 

  4. Guhaniyogi, J. & Brewer, G. Regulation of mRNA stability in mammalian cells. Gene 265, 11–23 (2001).

    Article  CAS  Google Scholar 

  5. Barreau, C., Paillard, L. & Osborne, H.B. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33, 7138–7150 (2005).

    Article  CAS  Google Scholar 

  6. Jing, Q. et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623–634 (2005).

    Article  CAS  Google Scholar 

  7. Raineri, I., Wegmueller, D., Gross, B., Certa, U. & Moroni, C. Roles of AUF1 isoforms, HuR and BRF1 in ARE-dependent mRNA turnover studied by RNA interference. Nucleic Acids Res. 32, 1279–1288 (2004).

    Article  CAS  Google Scholar 

  8. Lal, A. et al. Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J. 23, 3092–3102 (2004).

    Article  CAS  Google Scholar 

  9. Wang, W., Martindale, J.L., Yang, X., Chrest, F.J. & Gorospe, M. Increased stability of the p16 mRNA with replicative senescence. EMBO Rep. 6, 158–164 (2005).

    Article  CAS  Google Scholar 

  10. Zhang, W. et al. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol. Cell. Biol. 13, 7652–7665 (1993).

    Article  CAS  Google Scholar 

  11. Wagner, B.J., DeMaria, C.T., Sun, Y., Wilson, G.M. & Brewer, G. Structure and genomic organization of the human AUF1 gene: alternative pre-mRNA splicing generates four protein isoforms. Genomics 48, 195–202 (1998).

    Article  CAS  Google Scholar 

  12. Dempsey, L.A., Li, M.J., DePace, A., Bray-Ward, P. & Maizels, N. The human HNRPD locus maps to 4q21 and encodes a highly conserved protein. Genomics 49, 378–384 (1998).

    Article  CAS  Google Scholar 

  13. Sarkar, B., Lu, J.Y. & Schneider, R.J. Nuclear import and export functions in the different isoforms of the AUF1/heterogeneous nuclear ribonucleoprotein protein family. J. Biol. Chem. 278, 20700–20707 (2003).

    Article  CAS  Google Scholar 

  14. Chen, C.Y., Xu, N., Zhu, W. & Shyu, A.B. Functional dissection of hnRNP D suggests that nuclear import is required before hnRNP D can modulate mRNA turnover in the cytoplasm. RNA 10, 669–680 (2004).

    Article  CAS  Google Scholar 

  15. Laroia, G., Cuesta, R., Brewer, G. & Schneider, R.J. Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science 284, 499–502 (1999).

    Article  CAS  Google Scholar 

  16. Laroia, G. & Schneider, R.J. Alternate exon insertion controls selective ubiquitination and degradation of different AUF1 protein isoforms. Nucleic Acids Res. 30, 3052–3058 (2002).

    Article  CAS  Google Scholar 

  17. Bakheet, T., Frevel, M., Williams, B.R., Greer, W. & Khabar, K.S. ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res. 29, 246–254 (2001).

    Article  CAS  Google Scholar 

  18. Oster, S.K., Ho, C.S., Soucie, E.L. & Penn, L.Z. The myc oncogene: MarvelouslY Complex. Adv. Cancer Res. 84, 81–154 (2002).

    Article  CAS  Google Scholar 

  19. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  CAS  Google Scholar 

  20. Lozzio, B.B., Lozzio, C.B., Bamberger, E.G. & Feliu, A.S. A multipotential leukemia cell line (K-562) of human origin. Proc. Soc. Exp. Biol. Med. 166, 546–550 (1981).

    Article  CAS  Google Scholar 

  21. DeMaria, C.T. & Brewer, G. AUF1 binding affinity to A+U-rich elements correlates with rapid mRNA degradation. J. Biol. Chem. 271, 12179–12184 (1996).

    Article  CAS  Google Scholar 

  22. DeMaria, C.T., Sun, Y., Long, L., Wagner, B.J. & Brewer, G. Structural determinants in AUF1 required for high affinity binding to A + U-rich elements. J. Biol. Chem. 272, 27635–27643 (1997).

    Article  CAS  Google Scholar 

  23. Brewer, G. An A+U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol. Cell. Biol. 11, 2460–2466 (1991).

    Article  CAS  Google Scholar 

  24. Lal, A. et al. Posttranscriptional derepression of GADD45alpha by genotoxic stress. Mol. Cell 22, 117–128 (2006).

    Article  CAS  Google Scholar 

  25. Pioli, P.A., Hamilton, B.J., Connolly, J.E., Brewer, G. & Rigby, W.F.C. Lactate dehydrogenase is an AU-rich element-binding protein that directly interacts with AUF1. J. Biol. Chem. 277, 35738–35745 (2002).

    Article  CAS  Google Scholar 

  26. Kedersha, N.L., Gupta, M., Li, W., Miller, I. & Anderson, P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2{alpha} to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1442 (1999).

    Article  CAS  Google Scholar 

  27. Mazan-Mamczarz, K., Lal, A., Martindale, J.L., Kawai, T. & Gorospe, M. Translational repression by RNA-binding protein TIAR. Mol. Cell. Biol. 26, 2716–2727 (2006).

    Article  CAS  Google Scholar 

  28. Lu, J.Y., Bergman, N., Sadri, N. & Schneider, R.J. Assembly of AUF1 with eIF4G-poly(A) binding protein complex suggests a translation function in AU-rich mRNA decay. RNA 12, 883–893 (2006).

    Article  CAS  Google Scholar 

  29. Culjkovic, B., Topisirovic, I., Skrabanek, L., Ruiz-Gutierrez, M. & Borden, K.L. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J. Cell Biol. 175, 415–426 (2006).

    Article  CAS  Google Scholar 

  30. Hann, S.R., King, M.W., Bentley, D.L., Anderson, C.W. & Eisenman, R.N. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt's lymphomas. Cell 52, 185–195 (1988).

    Article  CAS  Google Scholar 

  31. Spotts, G.D., Patel, S.V., Xiao, Q. & Hann, S.R. Identification of downstream-initiated c-Myc proteins which are dominant-negative inhibitors of transactivation by full-length c-Myc proteins. Mol. Cell. Biol. 17, 1459–1468 (1997).

    Article  CAS  Google Scholar 

  32. Nanbru, C. et al. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J. Biol. Chem. 272, 32061–32066 (1997).

    Article  CAS  Google Scholar 

  33. Groisman, I. et al. Control of cellular senescence by CPEB. Genes Dev. 20, 2701–2712 (2006).

    Article  CAS  Google Scholar 

  34. Chen, C.Y. & Shyu, A.B. Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 14, 8471–8482 (1994).

    Article  CAS  Google Scholar 

  35. Bernstein, P.L., Herrick, D.J., Prokipcak, R.D. & Ross, J. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes Dev. 6, 642–654 (1992).

    Article  CAS  Google Scholar 

  36. Wisdom, R. & Lee, W. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev. 5, 232–243 (1991).

    Article  CAS  Google Scholar 

  37. Vervoorts, J., Luscher-Firzlaff, J. & Luscher, B. The ins and outs of MYC regulation by posttranslational mechanisms. J. Biol. Chem. 281, 34725–34729 (2006).

    Article  CAS  Google Scholar 

  38. Lu, J.Y., Sadri, N. & Schneider, R.J. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev. 20, 3174–3184 (2006).

    Article  CAS  Google Scholar 

  39. Langa, F. et al. Healthy mice with an altered c-myc gene: role of the 3′ untranslated region revisited. Oncogene 20, 4344–4353 (2001).

    Article  CAS  Google Scholar 

  40. Gouble, A. & Morello, D. Synchronous and regulated expression of two AU-binding proteins, AUF1 and HuR, throughout murine development. Oncogene 19, 5377–5384 (2000).

    Article  CAS  Google Scholar 

  41. Beck, A.R., Medley, Q.G., O'Brien, S., Anderson, P. & Streuli, M. Structure, tissue distribution and genomic organization of the murine RRM-type RNA binding proteins TIA-1 and TIAR. Nucleic Acids Res. 24, 3829–3835 (1996).

    Article  CAS  Google Scholar 

  42. Wilson, G.M. et al. Regulation of A + U-rich element-directed mRNA turnover involving reversible phosphorylation of AUF1. J. Biol. Chem. 278, 33029–33038 (2003).

    Article  CAS  Google Scholar 

  43. Wilson, G.M. et al. Phosphorylation of p40AUF1 regulates binding to A + U-rich mRNA-destabilizing elements and protein-induced changes in ribonucleoprotein structure. J. Biol. Chem. 278, 33039–33048 (2003).

    Article  CAS  Google Scholar 

  44. He, C. & Schneider, R. 14–3-3sigma is a p37 AUF1-binding protein that facilitates AUF1 transport and AU-rich mRNA decay. EMBO J. 25, 3823–3831 (2006).

    Article  CAS  Google Scholar 

  45. Fawal, M. et al. A “liaison dangereuse” between AUF1/hnRNPD and the oncogenic tyrosine kinase NPM-ALK. Blood 108, 2780–2788 (2006).

    Article  CAS  Google Scholar 

  46. Delgado, M.D., Lerga, A., Canelles, M., Gomez-Casares, M.T. & Leon, J. Differential regulation of Max and role of c-Myc during erythroid and myelomonocytic differentiation of K562 cells. Oncogene 10, 1659–1665 (1995).

    CAS  PubMed  Google Scholar 

  47. Williams, N.S. et al. Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin. Cancer Res. 9, 931–946 (2003).

    CAS  PubMed  Google Scholar 

  48. Liao, B. et al. Targeted knockdown of the RNA-binding protein CRD-BP promotes cell proliferation via an insulin-like growth factor II-dependent pathway in human K562 leukemia cells. J. Biol. Chem. 279, 48716–48724 (2004).

    Article  CAS  Google Scholar 

  49. Liao, B., Hu, Y., Herrick, D.J. & Brewer, G. The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J. Biol. Chem. 280, 18517–18524 (2005).

    Article  CAS  Google Scholar 

  50. Kawai, T. et al. Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR. Mol. Cell. Biol. 26, 3295–3307 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Gorospe (National Institute on Aging, US National Institutes of Health) for providing TIAR siRNA and the polyribosome gradient procedure; M. Gorospe, N. Kedersha and P. Anderson (Harvard Medical School) for plasmids pMT2 and pMT2-HA-TIAR; J. Leon (Universidad de Cantabria) for cell lines KmycB and KmycJ; and S. Gross and T. Kinzy (Robert Wood Johnson Medical School) for technical assistance with the polyribosome gradient experiments. This work was supported by US National Institutes of Health grant CA052443 to G.B.

Author information

Authors and Affiliations

Authors

Contributions

B.L. designed and performed experiments, interpreted experimental data and wrote the paper. Y.H. performed experiments. G.B. designed experiments, interpreted experimental data and wrote the paper. All authors approved the final version of the paper.

Corresponding author

Correspondence to Gary Brewer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Antibody specific for AUF1 precipitates MYC mRNA from cytoplasmic lysates of K562 cells (PDF 68 kb)

Supplementary Fig. 2

Effects of AUF1 knockdown on MYC gene expression in HeLa cells (PDF 3620 kb)

Supplementary Fig. 3

Effects of AUF1 knockdown on luciferase-MYC ARE reporter gene expression in HeLa cells (PDF 799 kb)

Supplementary Fig. 4

TIAR antibody precipitates MYC ARE reporter mRNA but not luciferase mRNA lacking the ARE (PDF 720 kb)

Supplementary Fig. 5

TIAR knockdown has no effect on MYC mRNA levels in K562 cells (PDF 780 kb)

Supplementary Fig. 6

Effects of TIAR knockdown on luciferase–MYC ARE reporter gene expression with in K562 cells (PDF 822 kb)

Supplementary Fig. 7

Controls for mRNP immunoprecipitations following AUF1 and TIAR knockdown (PDF 833 kb)

Supplementary Fig. 8

AUF1 knockdown retards proliferation of HeLa cells (PDF 54 kb)

Supplementary Fig. 9

TIAR knockdown reverses the cellular proliferation defect conferred by AUF1 knockdown (PDF 55 kb)

Supplementary Fig. 10

MYC knockdown reverses the proliferation-inducing effects of TIAR knockdown (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, B., Hu, Y. & Brewer, G. Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation. Nat Struct Mol Biol 14, 511–518 (2007). https://doi.org/10.1038/nsmb1249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing