Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection

Abstract

Histone acetylation is important in regulating DNA accessibility. Multifunctional Sin3 proteins bind histone deacetylases (HDACs) to assemble silencing complexes that selectively target chromatin. We show that, in fission yeast, an essential HDAC, Clr6, exists in two distinct Sin3 core complexes. Complex I contains an essential Sin3 homolog, Pst1, and other factors, and predominantly targets gene promoters. Complex II contains a nonessential Sin3 homolog, Pst2, and several conserved proteins. It preferentially targets transcribed chromosomal regions and centromere cores. Defects in complex II abrogate global protective functions of chromatin, causing increased accessibility of DNA to genotoxic agents and widespread antisense transcripts that are processed by the exosome. Notably, the two Clr6 complexes differentially repress forward and reverse centromeric repeat transcripts, suggesting that these complexes regulate transcription in heterochromatin and euchromatin in similar manners, including suppression of spurious transcripts from cryptic start sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Clr6 and Alp13 binding partners.
Figure 2: Clr6 forms distinct complexes: I/I′ and II.
Figure 3: Clr6 complexes have different roles in histone deacetylation.
Figure 4: Clr6 complex II represses antisense transcription.
Figure 5: Complexes I and II repress centromeric repeats.
Figure 6: Rrp6 and Set2 both regulate antisense transcripts.
Figure 7: Complexes I and II have distinct roles in maintaining genomic integrity.
Figure 8: Model showing differential roles of the Clr6 complexes.

Similar content being viewed by others

References

  1. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  2. Kurdistani, S.K. & Grunstein, M. Histone acetylation and deacetylation in yeast. Nat. Rev. Mol. Cell Biol. 4, 276–284 (2003).

    Article  CAS  Google Scholar 

  3. Ekwall, K. Genome-wide analysis of HDAC function. Trends Genet. 21, 608–615 (2005).

    Article  CAS  Google Scholar 

  4. Wurtele, H. & Verreault, A. Histone post-translational modifications and the response to DNA double-strand breaks. Curr. Opin. Cell Biol. 18, 137–144 (2006).

    Article  CAS  Google Scholar 

  5. Grewal, S.I., Bonaduce, M.J. & Klar, A.J. Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150, 563–576 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bjerling, P. et al. Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol. Cell. Biol. 22, 2170–2181 (2002).

    Article  CAS  Google Scholar 

  7. Shankaranarayana, G.D., Motamedi, M.R., Moazed, D. & Grewal, S.I. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol. 13, 1240–1246 (2003).

    Article  CAS  Google Scholar 

  8. Hansen, K.R. et al. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. Mol. Cell. Biol. 25, 590–601 (2005).

    Article  CAS  Google Scholar 

  9. Wiren, M. et al. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J. 24, 2906–2918 (2005).

    Article  CAS  Google Scholar 

  10. Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128, 491–504 (2007).

    Article  CAS  Google Scholar 

  11. Nakayama, J. et al. Alp13, an MRG family protein, is a component of fission yeast Clr6 histone deacetylase required for genomic integrity. EMBO J. 22, 2776–2787 (2003).

    Article  CAS  Google Scholar 

  12. Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr. Biol. 8, 96–108 (1998).

    Article  CAS  Google Scholar 

  13. Bertram, M.J. & Pereira-Smith, O.M. Conservation of the MORF4 related gene family: identification of a new chromo domain subfamily and novel protein motif. Gene 266, 111–121 (2001).

    Article  CAS  Google Scholar 

  14. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  Google Scholar 

  15. Joshi, A.A. & Struhl, K. Eaf3 chromodomain interaction with methylated H3–K36 links histone deacetylation to Pol II elongation. Mol. Cell 20, 971–978 (2005).

    Article  CAS  Google Scholar 

  16. Keogh, M.C. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593–605 (2005).

    Article  CAS  Google Scholar 

  17. Silverstein, R.A. & Ekwall, K. Sin3: a flexible regulator of global gene expression and genome stability. Curr. Genet. 47, 1–17 (2005).

    Article  CAS  Google Scholar 

  18. Hassig, C.A., Fleischer, T.C., Billin, A.N., Schreiber, S.L. & Ayer, D.E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347 (1997).

    Article  CAS  Google Scholar 

  19. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89, 357–364 (1997).

    Article  CAS  Google Scholar 

  20. Silverstein, R.A., Richardson, W., Levin, H., Allshire, R. & Ekwall, K. A new role for the transcriptional corepressor SIN3; regulation of centromeres. Curr. Biol. 13, 68–72 (2003).

    Article  CAS  Google Scholar 

  21. Alland, L. et al. Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex. Mol. Cell. Biol. 22, 2743–2750 (2002).

    Article  CAS  Google Scholar 

  22. Vannier, D., Balderes, D. & Shore, D. Evidence that the transcriptional regulators SIN3 and RPD3, and a novel gene (SDS3) with similar functions, are involved in transcriptional silencing in S. cerevisiae. Genetics 144, 1343–1353 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Meehan, W.J. et al. Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J. Biol. Chem. 279, 1562–1569 (2004).

    Article  CAS  Google Scholar 

  24. David, G., Turner, G.M., Yao, Y., Protopopov, A. & DePinho, R.A. mSin3-associated protein, mSds3, is essential for pericentric heterochromatin formation and chromosome segregation in mammalian cells. Genes Dev. 17, 2396–2405 (2003).

    Article  CAS  Google Scholar 

  25. Loewith, R., Meijer, M., Lees-Miller, S.P., Riabowol, K. & Young, D. Three yeast proteins related to the human candidate tumor suppressor p33(ING1) are associated with histone acetyltransferase activities. Mol. Cell. Biol. 20, 3807–3816 (2000).

    Article  CAS  Google Scholar 

  26. Feng, X., Hara, Y. & Riabowol, K. Different HATS of the ING1 gene family. Trends Cell Biol. 12, 532–538 (2002).

    Article  CAS  Google Scholar 

  27. Doyon, Y. et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol. Cell 21, 51–64 (2006).

    Article  CAS  Google Scholar 

  28. Kuzmichev, A., Zhang, Y., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Mol. Cell. Biol. 22, 835–848 (2002).

    Article  CAS  Google Scholar 

  29. Skowyra, D. et al. Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. J. Biol. Chem. 276, 8734–8739 (2001).

    Article  CAS  Google Scholar 

  30. Dang, V.D. et al. A new member of the Sin3 family of corepressors is essential for cell viability and required for retroelement propagation in fission yeast. Mol. Cell. Biol. 19, 2351–2365 (1999).

    Article  CAS  Google Scholar 

  31. Cam, H.P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37, 809–819 (2005).

    Article  CAS  Google Scholar 

  32. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  Google Scholar 

  33. Chikashige, Y. et al. Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell 57, 739–751 (1989).

    Article  CAS  Google Scholar 

  34. Grewal, S.I. & Klar, A.J. A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating-type switching in fission yeast. Genetics 146, 1221–1238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Minoda, A., Saitoh, S., Takahashi, K. & Toda, T. BAF53/Arp4 homolog Alp5 in fission yeast is required for histone H4 acetylation, kinetochore-spindle attachment, and gene silencing at centromere. Mol. Biol. Cell 16, 316–327 (2005).

    Article  CAS  Google Scholar 

  36. Grewal, S.I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    Article  CAS  Google Scholar 

  37. Thon, G. & Klar, A.J. The clr1 locus regulates the expression of the cryptic mating-type loci of fission yeast. Genetics 131, 287–296 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Carrozza, M.J. et al. Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex. Biochim. Biophys. Acta 1731, 77–87 (2005).

    Article  CAS  Google Scholar 

  39. Morris, S.A. et al. Histone H3 K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. Eukaryot. Cell 4, 1446–1454 (2005).

    Article  CAS  Google Scholar 

  40. Huang, Y., Bayfield, M.A., Intine, R.V. & Maraia, R.J. Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation. Nat. Struct. Mol. Biol. 13, 611–618 (2006).

    Article  CAS  Google Scholar 

  41. Houseley, J., LaCava, J. & Tollervey, D. RNA-quality control by the exosome. Nat. Rev. Mol. Cell Biol. 7, 529–539 (2006).

    Article  CAS  Google Scholar 

  42. Bird, A.W. et al. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411–415 (2002).

    Article  CAS  Google Scholar 

  43. Chen, J. & Stubbe, J. Bleomycins: towards better therapeutics. Nat. Rev. Cancer 5, 102–112 (2005).

    Article  CAS  Google Scholar 

  44. Lambert, S. & Carr, A.M. Checkpoint responses to replication fork barriers. Biochimie 87, 591–602 (2005).

    Article  CAS  Google Scholar 

  45. Vidal, M. & Gaber, R.F. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 6317–6327 (1991).

    Article  CAS  Google Scholar 

  46. Reid, J.L., Moqtaderi, Z. & Struhl, K. Eaf3 regulates the global pattern of histone acetylation in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 757–764 (2004).

    Article  CAS  Google Scholar 

  47. Zhang, Y. It takes a PHD to interpret histone methylation. Nat. Struct. Mol. Biol. 13, 572–574 (2006).

    Article  CAS  Google Scholar 

  48. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36, 1174–1180 (2004).

    Article  CAS  Google Scholar 

  49. Djupedal, I. et al. RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev. 19, 2301–2306 (2005).

    Article  CAS  Google Scholar 

  50. Nakagawa, H. et al. Fission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications. Genes Dev. 16, 1766–1778 (2002).

    Article  CAS  Google Scholar 

  51. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  Google Scholar 

  52. Wyers, F. et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725–737 (2005).

    Article  CAS  Google Scholar 

  53. Grewal, S.I. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science 301, 798–802 (2003).

    Article  CAS  Google Scholar 

  54. Li, X. & Manley, J.L. Cotranscriptional processes and their influence on genome stability. Genes Dev. 20, 1838–1847 (2006).

    Article  CAS  Google Scholar 

  55. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    Article  CAS  Google Scholar 

  56. Jazayeri, A., McAinsh, A.D. & Jackson, S.P. Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc. Natl. Acad. Sci. USA 101, 1644–1649 (2004).

    Article  CAS  Google Scholar 

  57. Tamburini, B.A. & Tyler, J.K. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol. Cell. Biol. 25, 4903–4913 (2005).

    Article  CAS  Google Scholar 

  58. Shogren-Knaak, M. et al. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  Google Scholar 

  59. Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. & Allshire, R.C. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032 (1997).

    Article  CAS  Google Scholar 

  60. Kelly, T.J. et al. The fission yeast cdc18+ gene product couples S phase to START and mitosis. Cell 74, 371–382 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Nakayama and A. Malikzay for helpful contributions, H. Levin (National Institute of Child Health and Human Development, NIH), K. Ekwall (Karolinska Institutet), R. Maraia (National Institute of Child Health and Human Development, NIH) for strains, M. Lichten, O. Sordet and J. Sabl for help in editing the manuscript and K. Noma, G. Mizuguchi, D. Eyre and M. Lichten for helpful discussions and protocols. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

S.I.S.G. and E.N. designed experiments; E.N. performed all biochemical and genetic experiments; E.N and H.P.C. performed the microarray experiments; T.Y. analyzed DNA prepared from bleomycin-treated cells by pulse-field gel electrophoresis; R.K. analyzed purified protein samples by mass spectrometry; P.C.F. helped analyze microarray expression data; S.I.S.G and E.N. wrote the paper; S.I.S.G. and H.P.C. edited the paper.

Corresponding author

Correspondence to Shiv I S Grewal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Genetic and biochemical characterization of Clr6-associated factors. (PDF 3008 kb)

Supplementary Fig. 2

Complexes I and II differentially affect histone acetylation at the promoters and the coding regions of genes. (PDF 222 kb)

Supplementary Fig. 3

Complexes I and II preferentially regulate sense and antisense transcripts. (PDF 63 kb)

Supplementary Fig. 4

Complex II suppresses antisense transcription at the zer1 and hrp1 coding regions. (PDF 558 kb)

Supplementary Fig. 5

Antisense transcription does not correlate with detectable levels of heterochromatic modifications at euchromatic loci. (PDF 2626 kb)

Supplementary Fig. 6

Complex I, but not complex II, is required for silencing of donor mating-type loci. (PDF 553 kb)

Supplementary Fig. 7

Distribution of H3K9 methylation in alp13rrp6 double mutant strain. (PDF 927 kb)

Supplementary Fig. 8

set2 and rrp6 mutant strains are sensitive to bleomycin treatment. (PDF 260 kb)

Supplementary Table 1

Loci showing upregulated antisense transcripts in alp13Δ mutant background. (PDF 39 kb)

Supplementary Table 2

Clr6 complex I and complex II subunits in S. pombe and their homologs in S. cerevisiae and mammals. (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolas, E., Yamada, T., Cam, H. et al. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat Struct Mol Biol 14, 372–380 (2007). https://doi.org/10.1038/nsmb1239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing