Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing

Abstract

H-NS is a protein of the bacterial nucleoid involved in DNA compaction and transcription regulation. In vivo, H-NS selectively silences specific genes of the bacterial chromosome. However, many studies have concluded that H-NS binds sequence-independently to DNA, leaving the molecular basis for its selectivity unexplained. We show that the negative regulatory element (NRE) of the supercoiling-sensitive Escherichia coli proU gene contains two identical high-affinity binding sites for H-NS. Cooperative binding of H-NS is abrogated by changes in DNA superhelical density and temperature. We further demonstrate that the high-affinity sites nucleate cooperative binding and establish a nucleoprotein structure required for silencing. Mutations in these sites result in loss of repression by H-NS. In this model, silencing at proU, and by inference at other genes directly regulated by H-NS, is tightly controlled by the cooperativity between bound H-NS molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the proU promoter.
Figure 2: DNase I footprints and quantification of H-NS binding on the proU promoter.
Figure 3: DNase I footprinting and KMnO4 reactivity of H-NS binding on the U162 and S162 fragments.
Figure 4: DNA stability plots.
Figure 5: Relative expression from the various proU constructs measured by fluorescence analysis.

Similar content being viewed by others

References

  1. Atlung, T. & Ingmer, H. H-NS: a modulator of environmentally regulated gene expression. Mol. Microbiol. 24, 7–17 (1997).

    Article  CAS  Google Scholar 

  2. Ono, S. et al. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem. J. 391, 203–213 (2005).

    Article  CAS  Google Scholar 

  3. Hansen, A.M. et al. SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Mol. Microbiol. 56, 719–734 (2005).

    Article  CAS  Google Scholar 

  4. Laaberki, M.H., Janabi, N., Oswald, E. & Repoila, F. Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157:H7: interplay between Ler, GrlA, H-NS and RpoS. Int. J. Med. Microbiol. 296, 197–210 (2006).

    Article  CAS  Google Scholar 

  5. Stella, S., Falconi, M., Lammi, M., Gualerzi, C.O. & Pon, C.L. Environmental control of the in vivo oligomerization of nucleoid protein H-NS. J. Mol. Biol. 355, 169–174 (2006).

    Article  CAS  Google Scholar 

  6. Goransson, M. et al. Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature 344, 682–685 (1990).

    Article  CAS  Google Scholar 

  7. Schnetz, K. & Wang, J.C. Silencing of the Escherichia coli bgl promoter: effects of template supercoiling and cell extracts on promoter activity in vitro. Nucleic Acids Res. 24, 2422–2428 (1996).

    Article  CAS  Google Scholar 

  8. Dame, R.T., Wyman, C. & Goosen, N. Structural basis for preferential binding of H-NS to curved DNA. Biochimie 83, 231–234 (2001).

    Article  CAS  Google Scholar 

  9. Rimsky, S., Zuber, F., Buckle, M. & Buc, H. A molecular mechanism for the repression of transcription by the H-NS protein. Mol. Microbiol. 42, 1311–1323 (2001).

    Article  CAS  Google Scholar 

  10. Spurio, R., Falconi, M., Brandi, A., Pon, C.L. & Gualerzi, C.O. The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending. EMBO J. 16, 1795–1805 (1997).

    Article  CAS  Google Scholar 

  11. Badaut, C. et al. The degree of oligomerization of the H-NS nucleoid structuring protein is related to specific binding to DNA. J. Biol. Chem. 277, 41657–41666 (2002).

    Article  CAS  Google Scholar 

  12. Prosseda, G. et al. The virF promoter in Shigella: more than just a curved DNA stretch. Mol. Microbiol. 51, 523–537 (2004).

    Article  CAS  Google Scholar 

  13. Pul, U. et al. LRP and H-NS - cooperative partners for transcription regulation at Escherichia coli rRNA promoters. Mol. Microbiol. 58, 864–876 (2005).

    Article  CAS  Google Scholar 

  14. Shin, M. et al. DNA looping-mediated repression by histone-like protein H-NS: specific requirement of Esigma70 as a cofactor for looping. Genes Dev. 19, 2388–2398 (2005).

    Article  CAS  Google Scholar 

  15. Spassky, A., Rimsky, S., Garreau, H. & Buc, H. H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro. Nucleic Acids Res. 12, 5321–5340 (1984).

    Article  CAS  Google Scholar 

  16. Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S. & Ishihama, A. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 181, 6361–6370 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamada, H., Yoshida, T., Tanaka, K., Sasakawa, C. & Mizuno, T. Molecular analysis of the Escherichia coli hns gene encoding a DNA-binding protein, which preferentially recognizes curved DNA sequences. Mol. Gen. Genet. 230, 332–336 (1991).

    Article  CAS  Google Scholar 

  18. Owen-Hughes, T.A. et al. The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell 71, 255–265 (1992).

    Article  CAS  Google Scholar 

  19. Rimsky, S. & Spassky, A. Sequence determinants for H1 binding on Escherichia coli lac and gal promoters. Biochemistry 29, 3765–3771 (1990).

    Article  CAS  Google Scholar 

  20. Lucht, J.M., Dersch, P., Kempf, B. & Bremer, E. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J. Biol. Chem. 269, 6578 (1994).

    CAS  PubMed  Google Scholar 

  21. Gowrishankar, J. & Manna, D. How is osmotic regulation of transcription of the Escherichia coli proU operon achieved: a review and a model. Genetica 97, 363–378 (1996).

    Article  CAS  Google Scholar 

  22. Csonka, L.N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53, 121–147 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rajkumari, K., Kusano, S., Ishihama, A., Mizuno, T. & Gowrishankar, J. Effects of H-NS and potassium glutamate on σS- and σ70-directed transcription in vitro from osmotically regulated P1 and P2 promoters of proU in Escherichia coli. J. Bacteriol. 178, 4176–4181 (1996).

    Article  CAS  Google Scholar 

  24. Rajkumari, K. & Gowrishankar, J. In vivo expression from the RpoS-dependent P1 promoter of the osmotically regulated proU operon in Escherichia coli and Salmonella enterica serovar Typhimurium: activation by rho and hns mutations and by cold stress. J. Bacteriol. 183, 6543–6550 (2001).

    Article  CAS  Google Scholar 

  25. Tanaka, K., Ueguchi, C. & Mizuno, T. Importance of stereospecific positioning of the upstream cis-acting DNA element containing a curved DNA structure for the functioning of the Escherichia coli proV promoter. Biosci. Biotechnol. Biochem. 58, 1097–1101 (1994).

    Article  CAS  Google Scholar 

  26. Csonka, L.N., Ikeda, T.P., Fletcher, S.A. & Kustu, S. The accumulation of glutamate is necessary for optimal growth of Salmonella typhimurium in media of high osmolality but not induction of the proU operon. J. Bacteriol. 176, 6324–6333 (1994).

    Article  CAS  Google Scholar 

  27. Jordi, B.J. & Higgins, C.F. The downstream regulatory element of the proU operon of Salmonella typhimurium inhibits open complex formation by RNA polymerase at a distance. J. Biol. Chem. 275, 12123–12128 (2000).

    Article  CAS  Google Scholar 

  28. Dattananda, C.S., Rajkumari, K. & Gowrishankar, J. Multiple mechanisms contribute to osmotic inducibility of proU operon expression in Escherichia coli: demonstration of two osmoresponsive promoters and of a negative regulatory element within the first structural gene. J. Bacteriol. 173, 7481–7490 (1991).

    Article  CAS  Google Scholar 

  29. Overdier, D.G. & Csonka, L.N. A transcriptional silencer downstream of the promoter in the osmotically controlled proU operon of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 89, 3140–3144 (1992).

    Article  CAS  Google Scholar 

  30. Fletcher, S.A. & Csonka, L.N. Fine-structure deletion analysis of the transcriptional silencer of the proU operon of Salmonella typhimurium. J. Bacteriol. 177, 4508–4513 (1995).

    Article  CAS  Google Scholar 

  31. Navarre, W.W. et al. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313, 236–238 (2006).

    Article  CAS  Google Scholar 

  32. Lucchini, S. et al. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog. 2, e81 (2006).

    Article  Google Scholar 

  33. Grainger, D.C., Hurd, D., Goldberg, M.D. & Busby, S.J. Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Res. 34, 4642–4652 (2006).

    Article  CAS  Google Scholar 

  34. Dame, R.T., Noom, M.C. & Wuite, G.J. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444, 387–390 (2006).

    Article  CAS  Google Scholar 

  35. Leonard, A.C. & Grimwade, J.E. Building a bacterial orisome: emergence of new regulatory features for replication origin unwinding. Mol. Microbiol. 55, 978–985 (2005).

    Article  CAS  Google Scholar 

  36. Zawilak-Pawlik, A. et al. Architecture of bacterial replication initiation complexes: orisomes from four unrelated bacteria. Biochem. J. 389, 471–481 (2005).

    Article  CAS  Google Scholar 

  37. Hulton, C.S. et al. Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria. Cell 63, 631–642 (1990).

    Article  CAS  Google Scholar 

  38. Oshima, T., Ishikawa, S., Kurokawa, K., Aiba, H. & Ogasawara, N. Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res. 13, 141–153 (2006).

    Article  CAS  Google Scholar 

  39. Blot, N., Mavathur, R., Geertz, M., Travers, A. & Muskhelishvili, G. Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome. EMBO Rep. 7, 710–715 (2006).

    Article  CAS  Google Scholar 

  40. Jubelin, G. et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J. Bacteriol. 187, 2038–2049 (2005).

    Article  CAS  Google Scholar 

  41. Sardesai, A.A. & Gowrishankar, J. Improvement in K+-limited growth rate associated with expression of the N-terminal fragment of one subunit (KdpA) of the multisubunit Kdp transporter in Escherichia coli. J. Bacteriol. 183, 3515–3520 (2001).

    Article  CAS  Google Scholar 

  42. Browning, D.F., Cole, J.A. & Busby, S.J. Suppression of FNR-dependent transcription activation at the Escherichia coli nir promoter by Fis, IHF and H-NS: modulation of transcription initiation by a complex nucleo-protein assembly. Mol. Microbiol. 37, 1258–1269 (2000).

    Article  CAS  Google Scholar 

  43. Dame, R.T. et al. DNA bridging: a property shared among H-NS-like proteins. J. Bacteriol. 187, 1845–1848 (2005).

    Article  CAS  Google Scholar 

  44. Muskhelishvili, G., Buckle, M., Heumann, H., Kahmann, R. & Travers, A.A. FIS activates sequential steps during transcription initiation at a stable RNA promoter. EMBO J. 16, 3655–3665 (1997).

    Article  CAS  Google Scholar 

  45. Stella, S., Spurio, R., Falconi, M., Pon, C.L. & Gualerzi, C.O. Nature and mechanism of the in vivo oligomerization of nucleoid protein H-NS. EMBO J. 24, 2896–2905 (2005).

    Article  CAS  Google Scholar 

  46. Dame, R.T. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol. Microbiol. 56, 858–870 (2005).

    Article  CAS  Google Scholar 

  47. Schneider, R. et al. An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res. 29, 5107–5114 (2001).

    Article  CAS  Google Scholar 

  48. Higgins, C.F. et al. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52, 569–584 (1988).

    Article  CAS  Google Scholar 

  49. Hardy, C.D. & Cozzarelli, N.R. A genetic selection for supercoiling mutants of Escherichia coli reveals proteins implicated in chromosome structure. Mol. Microbiol. 57, 1636–1652 (2005).

    Article  CAS  Google Scholar 

  50. Tanaka, K., Muramatsu, S., Yamada, H. & Mizuno, T. Systematic characterization of curved DNA segments randomly cloned from Escherichia coli and their functional significance. Mol. Gen. Genet. 226, 367–376 (1991).

    Article  CAS  Google Scholar 

  51. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  52. Williams, R.M., Rimsky, S. & Buc, H. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives. J. Bacteriol. 178, 4335–4343 (1996).

    Article  CAS  Google Scholar 

  53. Brenowitz, M., Senear, D.F., Shea, M.A. & Ackers, G.K. Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol. 130, 132–181 (1986).

    Article  CAS  Google Scholar 

  54. Krueger, A., Protozanova, E. & Frank-Kamenetskii, M.D. Sequence-dependent basepair opening in DNA double helix. Biophys. J. 90, 3091–3099 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique and the Agence Nationale pour la Recherche (projet MASTRIT). E.B. was funded by the Fondation pour La Recherche Médicale and the Ministère délégué à l'Enseignement supérieur et à la Recherche. We thank B. Robert and J. Gowrishankar for comments on the manuscript, I. Pemberton for his advice with the various constructions, G. Mitchison (University of Cambridge) for writing the DNA stability plot program and P. Bertin for kindly providing the strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Rimsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Footprinting on a modified proU sequence at positions +130 and +25. (PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouffartigues, E., Buckle, M., Badaut, C. et al. H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 14, 441–448 (2007). https://doi.org/10.1038/nsmb1233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing