Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequence-specific dynamics modulate recognition specificity in WW domains

Abstract

The current canon attributes the binding specificity of protein-recognition motifs to distinctive chemical moieties in their constituent amino acid sequences. However, we show for a WW domain that the sequence crucial for specificity is an intrinsically flexible loop that partially rigidifies upon ligand docking. A single-residue deletion in this loop simultaneously reduces loop flexibility and ligand binding affinity. These results suggest that sequences of recognition motifs may reflect natural selection of not only chemical properties but also dynamic modes that augment specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIN1-WW (1I6C) colored according to dynamics.
Figure 2: Reduced spectral density values Jeff(0) and 〈J(ωH)〉 of backbone NH bonds for apo–PIN1-WW (residues 6–39) at 278 K and 16.4 T.
Figure 3: Temperature dependence of apo–PIN1-WW backbone proton 1HN resonances of Arg17, Ser18, Ser19 and Gly20 in recognition loop I.
Figure 4: 15N R1ρ relaxation dispersion for Arg17 backbone NH.
Figure 5: Order parameters S2 of backbone NH bonds for apo– and Cdc25-complexed PIN1-WW at 278 K, 16.4 T.
Figure 6
Figure 7: 1H-15N steady-state NOE for wild-type PIN1-WW compared with the deletion mutant WWS19 at 16.4 T or 18.8 T, and 278 K.
Figure 8: Temperature dependence of the backbone NH resonance of Arg17.
Figure 9: Loop I energy-minimized conformations.

Similar content being viewed by others

References

  1. Sudol, M. & Hunter, T. New wrinkles for an old domain. Cell 103, 1001–1004 (2000).

    Article  CAS  Google Scholar 

  2. Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. & Noel, J.P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol. 7, 639–643 (2000).

    Article  CAS  Google Scholar 

  3. Zarrinpar, A., Bhattacharyya, R.P. & Lim, W.A. The structure and function of proline recognition domains. Sci. STKE 2003, RE8 (2003).

    PubMed  Google Scholar 

  4. Wintjens, R. et al. 1H NMR study on the binding of PIN1 Trp-Trp domain with phosphothreonine peptides. J. Biol. Chem. 276, 25150–25156 (2001).

    Article  CAS  Google Scholar 

  5. Jäger, M. et al. Structure-function-folding relationship in a WW domain. Proc. Natl. Acad. Sci. USA 103, 10648–10653 (2006).

    Article  Google Scholar 

  6. Kowalski, J.A., Liu, K. & Kelly, J.W. NMR solution structure of the isolated Apo PIN1 WW domain: comparison to the x-ray crystal structures of PIN1. Biopolymers 63, 111–121 (2002).

    Article  CAS  Google Scholar 

  7. Jacobs, D.M. et al. Peptide binding induces large scale changes in inter-domain mobility in human PIN1. J. Biol. Chem. 278, 26174–26182 (2003).

    Article  CAS  Google Scholar 

  8. Bayer, E. et al. Structural analysis of the mitotic regulator hPIN1 in solution: insights into domain architecture and substrate binding. J. Biol. Chem. 278, 26183–26193 (2003).

    Article  CAS  Google Scholar 

  9. Peng, J.W. & Wagner, G. Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry 34, 16733–16752 (1995).

    Article  CAS  Google Scholar 

  10. Ishima, R. & Nagayama, K. Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry 34, 3162–3171 (1995).

    Article  CAS  Google Scholar 

  11. Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. & Kay, L.E. Spectral density function mapping using 15N relaxation data exclusively. J. Biomol. NMR 6, 153–162 (1995).

    Article  CAS  Google Scholar 

  12. Brutscher, B., Bruschweiler, R. & Ernst, R.R. Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by 1H, 13C, and 15N nuclear magnetic resonance spectroscopy. Biochemistry 36, 13043–13053 (1997).

    Article  CAS  Google Scholar 

  13. Massi, F., Johnson, E., Wang, C., Rance, M. & Palmer, A.G., III . NMR R1 rho rotating-frame relaxation with weak radio frequency fields. J. Am. Chem. Soc. 126, 2247–2256 (2004).

    Article  CAS  Google Scholar 

  14. Luz, Z. & Meiboom, S. Nuclear magnetic resonance study of the protolysis of trimethylammonium ion in aqueous solution – order of the reaction with respect to solvent. J. Chem. Phys. 39, 366–370 (1963).

    Article  CAS  Google Scholar 

  15. Trott, O. & Palmer, A.G., III . R1rho relaxation outside of the fast-exchange limit. J. Magn. Reson. 154, 157–160 (2002).

    Article  CAS  Google Scholar 

  16. Carver, J.P. & Richards, R.E. A general two-site solution for the chemical exchange produced dependence of T2 upon the Carr-Purcell pulse separation. J. Magn. Reson. 6, 89–105 (1972).

    CAS  Google Scholar 

  17. Millet, O., Loria, J.P., Kroenke, C.D., Pons, M. & Palmer, A.G., III . The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J. Am. Chem. Soc. 122, 2867–2877 (2000).

    Article  CAS  Google Scholar 

  18. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  19. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  20. Lacy, E.R. et al. p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat. Struct. Mol. Biol. 11, 358–364 (2004).

    Article  CAS  Google Scholar 

  21. Heinz, D.W. et al. Changing the inhibitory specificity and function of the proteinase inhibitor eglin c by site-directed mutagenesis: functional and structural investigation. Biochemistry 31, 8755–8766 (1992).

    Article  CAS  Google Scholar 

  22. Peng, J.W. & Wagner, G. Investigation of protein motions via relaxation measurements. Methods Enzymol. 239, 563–596 (1994).

    Article  CAS  Google Scholar 

  23. Jäger, M., Nguyen, H., Crane, J.C., Kelly, J.W. & Gruebele, M. The folding mechanism of a beta-sheet: the WW domain. J. Mol. Biol. 311, 373–393 (2001).

    Article  Google Scholar 

  24. Ikura, M., Kay, L.E. & Bax, A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659–4667 (1990).

    Article  CAS  Google Scholar 

  25. Wittekind, M. & Mueller, L. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J. Magn. Reson. A 101, 201–205 (1993).

    Article  CAS  Google Scholar 

  26. Grzesiek, S. & Bax, A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291–6293 (1992).

    Article  CAS  Google Scholar 

  27. Grzesiek, S., Anglister, J. & Bax, A. Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J. Magn. Reson. B 101, 114–119 (1993).

    Article  CAS  Google Scholar 

  28. Zuiderweg, E.R.P. & Fesik, S.W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28, 2387–2391 (1989).

    Article  CAS  Google Scholar 

  29. Goddard, T.D. & Kneller, D.G. SPARKY 3 (University of California, San Francisco, 2006).

    Google Scholar 

  30. Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  31. Sklenar, V., Piotto, M., Leppik, R. & Saudek, V. Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J. Magn. Reson. 102, 241–245 (1993).

    Article  CAS  Google Scholar 

  32. Tjandra, N., Szabo, A. & Bax, A. Protein backbone dynamics and 15N chemical shift anisotropy from quantitative measurement of relaxation interference effects. J. Am. Chem. Soc. 118, 6986–6991 (1996).

    Article  CAS  Google Scholar 

  33. Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. Numerical Recipes in C (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  34. Peng, J.W. & Wagner, G. Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry 31, 8571–8586 (1992).

    Article  CAS  Google Scholar 

  35. Peng, J.W. New probes of ligand flexibility in drug design: transferred (13)C CSA-dipolar cross-correlated relaxation at natural abundance. J. Am. Chem. Soc. 125, 11116–11130 (2003).

    Article  CAS  Google Scholar 

  36. Palmer, A.G., III, Rance, M. & Wright, P.E. Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13C heteronuclear spectroscopy. J. Am. Chem. Soc. 113, 4371–4380 (1991).

    Article  CAS  Google Scholar 

  37. Mandel, A.M., Akke, M. & Palmer, A.G., III . Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–163 (1995).

    Article  CAS  Google Scholar 

  38. Lee, L.K., Rance, M., Chazin, W.J. & Palmer, A.G., III . Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C alpha nuclear spin relaxation. J. Biomol. NMR 9, 287–298 (1997).

    Article  CAS  Google Scholar 

  39. Lee, A.L., Kinnear, S.A. & Wand, A.J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat. Struct. Biol. 7, 72–77 (2000).

    Article  CAS  Google Scholar 

  40. Case, D.A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Goodson, P. Clark, G. Pasat and B. Wilson for critical reading of the manuscript. This work was supported in part by the American Chemical Society Petroleum Research Fund PRF no. 44640-G4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W Peng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

NMR titration. (PDF 156 kb)

Supplementary Table 1

Dynamic parameters. (PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, T., Zintsmaster, J., Namanja, A. et al. Sequence-specific dynamics modulate recognition specificity in WW domains. Nat Struct Mol Biol 14, 325–331 (2007). https://doi.org/10.1038/nsmb1207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing