Dynamics of the unbound head during myosin V processive translocation

Article metrics

Abstract

Myosin V moves cargoes along actin filaments by walking hand over hand. Although numerous studies support the basic hand-over-hand model, little is known about the fleeting intermediate that occurs when the rear head detaches from the filament. Here we use submillisecond dark-field imaging of gold nanoparticle–labeled myosin V to directly observe the free head as it releases from the actin filament, diffuses forward and rebinds. We find that the unbound head rotates freely about the lever-arm junction, a trait that likely facilitates travel through crowded actin meshworks.

NOTE: In the version of this article initially published online, the length of the step shown in Figure 3e was mislabeled: it should be +25nm, not +24nm. In addition, the word "(right)" was erroneously included in the legend of Figure 2b. The errors have been corrected for all versions of the article.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Tracking the motion of the M5 lever arm with millisecond time resolution.
Figure 2: Characterization of the one-head-bound intermediate.
Figure 3: A myosin V model mechanism.

Change history

  • 18 February 2007

    NOTE: In the version of this article initially published online, the length of the step shown in Figure 3e was mislabeled: it should be +25nm, not +24nm. In addition, the word "(right)" was erroneously included in the legend of Figure 2b. The errors have been corrected for all versions of the article.

References

  1. 1

    Sellers, J.R. & Veigel, C. Curr. Opin. Cell Biol. 18, 68–73 (2006).

  2. 2

    Kitamura, K., Tokunaga, M., Iwane, A.H. & Yanagida, T. Nature 397, 129–134 (1999).

  3. 3

    Watanabe, T.M. et al. Proc. Natl. Acad. Sci. USA 101, 9630–9635 (2004).

  4. 4

    Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., Jr. & Itoh, H. Nature 410, 898–904 (2001).

  5. 5

    Yildiz, A. et al. Science 300, 2061–2065 (2003).

  6. 6

    De La Cruz, E.M., Wells, A.L., Rosenfeld, S.S., Ostap, E.M. & Sweeney, H.L. Proc. Natl. Acad. Sci. USA 96, 13726–13731 (1999).

  7. 7

    Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E. & Goldman, Y.E. Nature 422, 399–404 (2003).

  8. 8

    Ali, M.Y. et al. Nat. Struct. Biol. 9, 464–467 (2002).

  9. 9

    Veigel, C., Schmitz, S., Wang, F. & Sellers, J.R. Nat. Cell Biol. 7, 861–869 (2005).

  10. 10

    Veigel, C., Wang, F., Bartoo, M.L., Sellers, J.R. & Molloy, J.E. Nat. Cell Biol. 4, 59–65 (2002).

  11. 11

    Uemura, S., Higuchi, H., Olivares, A.O., De La Cruz, E.M. & Ishiwata, S. Nat. Struct. Mol. Biol. 11, 877–883 (2004).

  12. 12

    De La Cruz, E.M., Wells, A.L., Sweeney, H.L. & Ostap, E.M. Biochemistry 39, 14196–14202 (2000).

  13. 13

    Rosenfeld, S.S. & Sweeney, H.L. J. Biol. Chem. 279, 40100–40111 (2004).

  14. 14

    Baker, J.E. et al. Proc. Natl. Acad. Sci. USA 101, 5542–5546 (2004).

  15. 15

    Syed, S., Snyder, G.E., Franzini-Armstrong, C., Selvin, P.R. & Goldman, Y.E. EMBO J. 25, 1795–1803 (2006).

  16. 16

    Toprak, E. et al. Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).

  17. 17

    Walker, M.L. et al. Nature 405, 804–807 (2000).

  18. 18

    Burgess, S. et al. J. Cell Biol. 159, 983–991 (2002).

  19. 19

    Purcell, T.J., Sweeney, H.L. & Spudich, J.A. Proc. Natl. Acad. Sci. USA 102, 13873–13878 (2005).

  20. 20

    Olivares, A.O., Chang, W., Mooseker, M.S., Hackney, D.D. & De La Cruz, E.M. J. Biol. Chem. 281, 31326–31336 (2006).

  21. 21

    De La Cruz, E.M. & Ostap, E.M. Curr. Opin. Cell Biol. 16, 61–67 (2004).

  22. 22

    Espindola, F.S. et al. Cell Motil. Cytoskeleton 47, 269–281 (2000).

  23. 23

    Frank, D.J. et al. J. Biol. Chem. 281, 24728–24736 (2006).

  24. 24

    Snider, J. et al. Proc. Natl. Acad. Sci. USA 101, 13204–13209 (2004).

Download references

Acknowledgements

We thank R. Vale (University of California, San Francisco) for the loan of the dark-field condenser and Z. Bryant and S. Churchman for insightful commentary. A.R.D. is a Jane Coffin Childs Postdoctoral Fellow. J.A.S. is supported by grant GM33289 from the US National Institutes of Health.

Author information

Correspondence to James A Spudich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression of M5elc and M5cam (PDF 472 kb)

Supplementary Fig. 2

Sample trace showing alternating 53- and 21-nm steps (PDF 410 kb)

Supplementary Fig. 3

Step-size and dwell-time histograms (PDF 105 kb)

Supplementary Fig. 4

Sample axial and lateral displacements during the one-head-bound intermediate (PDF 140 kb)

Supplementary Fig. 5

Axial and lateral standard deviation histograms (PDF 455 kb)

Supplementary Fig. 6

Mathematical modeling of the one-head-bound state (PDF 94 kb)

Supplementary Fig. 7

Lateral displacement during the one-head-bound intermediate (PDF 144 kb)

Supplementary Fig. 8

M5elc free-head rebinding kinetics in the presence of 100 mM BDM (PDF 345 kb)

Supplementary Fig. 9

M5elc free-head rebinding kinetics in the presence of 50 mM free phosphate (PDF 113 kb)

Supplementary Video 1

M5elc labeled with a 40-nm gold particle walks on actin (MOV 546 kb)

Supplementary Methods (PDF 201 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dunn, A., Spudich, J. Dynamics of the unbound head during myosin V processive translocation. Nat Struct Mol Biol 14, 246–248 (2007) doi:10.1038/nsmb1206

Download citation

Further reading