Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

RNA interference: unraveling a mystery

Andrew Fire and Craig Mello have won the Nobel Prize in Medicine or Physiology for their discovery of RNA interference. Mary K. Montgomery, then a postdoc in the Fire laboratory, participated in some of the key experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Fire, A., Albertson, D., Harrison, S. & Moerman, D. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 113, 503–514 (1991).

    CAS  PubMed  Google Scholar 

  3. Izant, J.G. & Weintraub, H. Inhibition of thymidine kinase gene expression by antisense RNA: a molecular approach to genetic analysis. Cell 36, 1007–1015 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Guo, S. & Kemphues, K. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. May, R.C. & Plasterk, R.H. RNA interference spreading in C. elegans. Methods Enzymol. 392, 308–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Seydoux, G. et al. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382, 713–716 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Montgomery, M.K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 15502–15507 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppresion of homologous genes in trans. Plant Cell 2, 279–289 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Romano, N. & Macino, G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Grishok, A., Tabara, H. & Mello, C.C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494–2497 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Vastenhouw, N.L. et al. Gene expression: long-term gene silencing by RNAi. Nature 442, 882 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Bernstein, E. & Allis, C.D. RNA meets chromatin. Genes Dev. 19, 1635–1655 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Mette, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A. & Matzke, A.J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 19, 5194–5204 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qi, Y. et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443, 1008–1012 (2006).

    Article  PubMed  Google Scholar 

  16. Zamore, P.D., Tuschl, T., Sharp, P. & Bartel, D. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at the 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Ketting, R.F., Haverkamp, T.H., van Luenen, H.G. & Plasterk, R.H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montgomery, M. RNA interference: unraveling a mystery. Nat Struct Mol Biol 13, 1039–1041 (2006). https://doi.org/10.1038/nsmb1206-1039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1206-1039

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing