Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general amphipathic α-helical motif for sensing membrane curvature

Abstract

The Golgi-associated protein ArfGAP1 has an unusual membrane-adsorbing amphipathic α-helix: its polar face is weakly charged, containing mainly serine and threonine residues. We show that this feature explains the specificity of ArfGAP1 for curved versus flat lipid membranes. We built an algorithm to identify other potential amphipathic α-helices rich in serine and threonine residues in protein databases. Among the identified sequences, we show that three act as membrane curvature sensors. In the golgin GMAP-210, the sensor may serve to trap small vesicles at the end of a long coiled coil. In Osh4p/Kes1p, which transports sterol between membranes, the sensor controls access to the sterol-binding pocket. In the nucleoporin Nup133, the sensor corresponds to an exposed loop of a β-propeller structure. Ser/Thr-rich amphipathic helices thus define a general motif used by proteins of various functions for sensing membrane curvature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ArfGAP1 mutants with reduced sensitivity to membrane curvature.
Figure 2: Functional consequence of the introduction of charged residues into the ALPS motif of ArfGAP1.
Figure 3: Changing lipid charge and geometry affects the response of ArfGAP11–257 mutants to membrane curvature.
Figure 4: A functional ALPS-like motif in the golgin GMAP-210.
Figure 5: A functional ALPS-like motif in the sterol transporter Kes1p.
Figure 6: A functional ALPS-like motif in the nucleoporin Nup133.

Similar content being viewed by others

References

  1. Dunne, S.J., Cornell, R.B., Johnson, J.E., Glover, N.R. & Tracey, A.S. Structure of the membrane binding domain of CTP:phosphocholine cytidylyltransferase. Biochemistry 35, 11975–11984 (1996).

    Article  CAS  Google Scholar 

  2. Antonny, B., Beraud-Dufour, S., Chardin, P. & Chabre, M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675–4684 (1997).

    Article  CAS  Google Scholar 

  3. Jao, C.C., Der-Sarkissian, A., Chen, J. & Langen, R. Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc. Natl. Acad. Sci. USA 101, 8331–8336 (2004).

    Article  CAS  Google Scholar 

  4. Dathe, M. & Wieprecht, T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta 1462, 71–87 (1999).

    Article  CAS  Google Scholar 

  5. Lee, M.C. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122, 605–617 (2005).

    Article  CAS  Google Scholar 

  6. Ford, M.G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  Google Scholar 

  7. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  Google Scholar 

  8. Hristova, K. et al. An amphipathic alpha-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J. Mol. Biol. 290, 99–117 (1999).

    Article  CAS  Google Scholar 

  9. Bigay, J., Casella, J.F., Drin, G., Mesmin, B. & Antonny, B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 24, 2244–2253 (2005).

    Article  CAS  Google Scholar 

  10. McMahon, H.T. & Mills, I.G. COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr. Opin. Cell Biol. 16, 379–391 (2004).

    Article  CAS  Google Scholar 

  11. Tanigawa, G. et al. Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J. Cell Biol. 123, 1365–1371 (1993).

    Article  CAS  Google Scholar 

  12. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

    Article  CAS  Google Scholar 

  13. Antonny, B., Huber, I., Paris, S., Chabre, M. & Cassel, D. Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem. 272, 30848–30851 (1997).

    Article  CAS  Google Scholar 

  14. Parnis, A. et al. Golgi localization determinants in ArfGAP1 and in new tissue-specific ArfGAP1 isoforms. J. Biol. Chem. 281, 3785–3792 (2006).

    Article  CAS  Google Scholar 

  15. Antonny, B. Membrane deformation by protein coats. Curr. Opin. Cell Biol. 18, 386–394 (2006).

    Article  CAS  Google Scholar 

  16. Infante, C., Ramos-Morales, F., Fedriani, C., Bornens, M. & Rios, R.M. GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J. Cell Biol. 145, 83–98 (1999).

    Article  CAS  Google Scholar 

  17. Raychaudhuri, S., Im, Y.J., Hurley, J.H. & Prinz, W.A. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J. Cell Biol. 173, 107–119 (2006).

    Article  CAS  Google Scholar 

  18. Berke, I.C., Boehmer, T., Blobel, G. & Schwartz, T.U. Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex. J. Cell Biol. 167, 591–597 (2004).

    Article  CAS  Google Scholar 

  19. Mishra, V.K. & Palgunachari, M.N. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes. Biochemistry 35, 11210–11220 (1996).

    Article  CAS  Google Scholar 

  20. Mishra, V.K., Palgunachari, M.N., Segrest, J.P. & Anantharamaiah, G.M. Interactions of synthetic peptide analogs of the class A amphipathic helix with lipids. Evidence for the snorkel hypothesis. J. Biol. Chem. 269, 7185–7191 (1994).

    CAS  PubMed  Google Scholar 

  21. Bigay, J. & Antonny, B. Real-time assays for the assembly-disassembly cycle of COP coats on liposomes of defined size. Methods Enzymol. 404, 95–107 (2005).

    Article  CAS  Google Scholar 

  22. Murray, D. et al. Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys. J. 77, 3176–3188 (1999).

    Article  CAS  Google Scholar 

  23. Seelig, J. Thermodynamics of lipid-peptide interactions. Biochim. Biophys.Acta 1666, 40–50 (2004).

    Article  CAS  Google Scholar 

  24. Sapay, N., Guermeur, Y. & Deleage, G. Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinformatics 7, 255 (2006).

    Article  Google Scholar 

  25. Eisenberg, D., Weiss, R.M. & Terwilliger, T.C. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299, 371–374 (1982).

    Article  CAS  Google Scholar 

  26. Mesmin, B. et al. Two lipid packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature. Biochemistry (in the press).

  27. Barr, F.A. & Short, B. Golgins in the structure and dynamics of the Golgi apparatus. Curr. Opin. Cell Biol. 15, 405–413 (2003).

    Article  CAS  Google Scholar 

  28. Rios, R.M., Sanchis, A., Tassin, A.M., Fedriani, C. & Bornens, M. GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118, 323–335 (2004).

    Article  CAS  Google Scholar 

  29. Gillingham, A.K., Tong, A.H., Boone, C. & Munro, S. The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. J. Cell Biol. 167, 281–292 (2004).

    Article  CAS  Google Scholar 

  30. Im, Y.J., Raychaudhuri, S., Prinz, W.A. & Hurley, J.H. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature 437, 154–158 (2005).

    Article  CAS  Google Scholar 

  31. Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 (2001).

    Article  CAS  Google Scholar 

  32. White, S.H. & Wimley, W.C. Hydrophobic interactions of peptides with membrane interfaces. Biochim. Biophys. Acta 1376, 339–352 (1998).

    Article  CAS  Google Scholar 

  33. Gallop, J.L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).

    Article  CAS  Google Scholar 

  34. Masuda, M. et al. Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J. 25, 2889–2897 (2006).

    Article  CAS  Google Scholar 

  35. Michelitsch, M.D. & Weissman, J.S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA 97, 11910–11915 (2000).

    Article  CAS  Google Scholar 

  36. Choma, C., Gratkowski, H., Lear, J.D. & DeGrado, W.F. Asparagine-mediated self-association of a model transmembrane helix. Nat. Struct. Biol. 7, 161–166 (2000).

    Article  CAS  Google Scholar 

  37. Zhou, F.X., Cocco, M.J., Russ, W.P., Brunger, A.T. & Engelman, D.M. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat. Struct. Biol. 7, 154–160 (2000).

    Article  CAS  Google Scholar 

  38. Rios, R.M. et al. A peripheral protein associated with the cis-Golgi network redistributes in the intermediate compartment upon brefeldin A treatment. J. Cell Biol. 125, 997–1013 (1994).

    Article  CAS  Google Scholar 

  39. Pernet-Gallay, K. et al. The overexpression of GMAP-210 blocks anterograde and retrograde transport between the ER and the Golgi apparatus. Traffic 3, 822–832 (2002).

    Article  CAS  Google Scholar 

  40. Lehto, M. & Olkkonen, V.M. The OSBP-related proteins: a novel protein family involved in vesicle transport, cellular lipid metabolism, and cell signalling. Biochim. Biophys. Acta 1631, 1–11 (2003).

    Article  CAS  Google Scholar 

  41. Fang, M. et al. Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. EMBO J. 15, 6447–6459 (1996).

    Article  CAS  Google Scholar 

  42. Li, X. et al. Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J. Cell Biol. 157, 63–77 (2002).

    Article  CAS  Google Scholar 

  43. Yanagisawa, L.L. et al. Activity of specific lipid-regulated ADP ribosylation factor-GTPase-activating proteins is required for Sec14p-dependent Golgi secretory function in yeast. Mol. Biol. Cell 13, 2193–2206 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Walther, T.C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

    Article  CAS  Google Scholar 

  45. Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11, 853–864 (2003).

    Article  CAS  Google Scholar 

  46. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495–506 (1999).

    Article  CAS  Google Scholar 

  47. Sreerama, N. & Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252–260 (2000).

    Article  CAS  Google Scholar 

  48. Fauchere, J. & Pliska, V. Hydrophobic parameters π of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur. J. Med. Chem. 8, 369–375 (1983).

    Google Scholar 

Download references

Acknowledgements

We thank M. Bornens (Institut Curie), R.M. Rios (Universidad de Sevilla) and V.A. Bankaitis (University of North Carolina) for the GMAP-210 and Kes1p plasmids, S. Scarzello for mass spectrometry analysis, N. Leroudier for DNA sequencing and V. Morello for help with experiments. We also thank M. Bornens, M. Chabre, B. Goud, C. Jackson, S. Paris and members of our laboratories for discussions. This work was supported by the CNRS, the Ministère de la Recherche (Action Concertée Incitative: dynamique et réactivité des assemblages biologiques) and by the Agence Nationale de la Recherche (ANR non thématique). G.D. was supported by postdoctoral fellowships from the CNRS and the ANR.

Author information

Authors and Affiliations

Authors

Contributions

G.D. and B.A. conceived the study and wrote the manuscript. G.D. and J.-F.C. prepared most protein constructs and performed the biochemical experiments. G.D. performed the spectroscopic measurements. R.G. conceived the bioinformatics program. T.B. and T.U.S. designed and prepared the Nup133 constructs.

Corresponding author

Correspondence to Bruno Antonny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Human proteins with a putative ALPS-like motif. (PDF 231 kb)

Supplementary Table 2

Yeast proteins with a putative ALPS-like motif. (PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drin, G., Casella, JF., Gautier, R. et al. A general amphipathic α-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14, 138–146 (2007). https://doi.org/10.1038/nsmb1194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing