Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors

Abstract

The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal α-glucan–metabolizing machinery as virulence factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary structure analysis of PulA and SpuA.
Figure 2: Carbohydrate macroarray with streptococcal family 41 CBMs.
Figure 3: Binding properties of SpnDX and SpyDX.
Figure 4: Structure of SpyDX.
Figure 5: SpnDX with ligand present in both binding grooves.
Figure 6: Mouse lung tissue probed with FITC-labeled SpyDX and SpnDX.
Figure 7: Localization of SpyDX and SpnDX to alveolar type II cells.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Manco, S. et al. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect. Immun. 74, 4014–4020 (2006).

    Article  CAS  Google Scholar 

  2. Soong, G. et al. Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J. Clin. Invest. 116, 2297–2305 (2006).

    Article  CAS  Google Scholar 

  3. Hava, D.L. & Camilli, A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45, 1389–1406 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boraston, A.B., Bolam, D.N., Gilbert, H.J. & Davies, G.J. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382, 769–781 (2004).

    Article  CAS  Google Scholar 

  5. Lammerts van Bueren, A., Finn, R., Ausio, J. & Boraston, A.B. Alpha-glucan recognition by a new family of carbohydrate-binding modules found primarily in bacterial pathogens. Biochemistry 43, 15633–15642 (2004).

    Article  Google Scholar 

  6. Tomasz, A. New faces of an old pathogen: emergence and spread of multidrug-resistant Streptococcus pneumoniae. Am. J. Med. 107, 55S–62S (1999).

    Article  CAS  Google Scholar 

  7. Cunningham, M.W. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13, 470–511 (2000).

    Article  CAS  Google Scholar 

  8. Cengiz, A.B. et al. Fatal necrotizing pneumonia caused by group A streptococcus. J. Paediatr. Child Health 40, 69–71 (2004).

    Article  CAS  Google Scholar 

  9. Morozumi, M. et al. Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. J. Clin. Microbiol. 44, 1440–1446 (2006).

    Article  CAS  Google Scholar 

  10. Shelburne, S.A., III et al. Maltodextrin utilization plays a key role in the ability of group A Streptococcus to colonize the oropharynx. Infect. Immun. 74, 4605–4614 (2006).

    Article  CAS  Google Scholar 

  11. Bongaerts, R.J., Heinz, H.P., Hadding, U. & Zysk, G. Antigenicity, expression, and molecular characterization of surface-located pullulanase of Streptococcus pneumoniae. Infect. Immun. 68, 7141–7143 (2000).

    Article  CAS  Google Scholar 

  12. Hytonen, J., Haataja, S. & Finne, J. Streptococcus pyogenes glycoprotein-binding strepadhesin activity is mediated by a surface-associated carbohydrate-degrading enzyme, pullulanase. Infect. Immun. 71, 784–793 (2003).

    Article  CAS  Google Scholar 

  13. Hytonen, J., Haataja, S. & Finne, J. Use of flow cytometry for the adhesion analysis of Streptococcus pyogenes mutant strains to epithelial cells: investigation of the possible role of surface pullulanase and cysteine protease, and the transcriptional regulator Rgg. BMC Microbiol. 6, 18 (2006).

    Article  Google Scholar 

  14. Kriegshauser, G. & Liebl, W. Pullulanase from the hyperthermophilic bacterium Thermotoga maritima: purification by beta-cyclodextrin affinity chromatography. J. Chromatogr. B Biomed. Sci. Appl. 737, 245–251 (2000).

    Article  CAS  Google Scholar 

  15. Mikami, B. et al. Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J. Mol. Biol. 359, 690–707 (2006).

    Article  CAS  Google Scholar 

  16. Sorimachi, K., Le Gal-Coeffet, M.F., Williamson, G., Archer, D.B. & Williamson, M.P. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5, 647–661 (1997).

    Article  CAS  Google Scholar 

  17. Boraston, A.B. et al. A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J. Biol. Chem. 281, 587–598 (2006).

    Article  CAS  Google Scholar 

  18. Boraston, A.B., Kwan, E., Chiu, P., Warren, R.A. & Kilburn, D.G. Recognition and hydrolysis of noncrystalline cellulose. J. Biol. Chem. 278, 6120–6127 (2003).

    Article  CAS  Google Scholar 

  19. Lammerts van Bueren, A. & Boraston, A.B. The structural basis of alpha-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima. J. Mol. Biol. published online 11 October 2006 (doi:10.1016/j.jmb.2006.10.018).

  20. Sorimachi, K. et al. Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 259, 970–987 (1996).

    Article  CAS  Google Scholar 

  21. Sakon, J., Irwin, D., Wilson, D.B. & Karplus, P.A. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat. Struct. Biol. 4, 810–818 (1997).

    Article  CAS  Google Scholar 

  22. Weaver, T.E. & Conkright, J.J. Function of surfactant proteins B and C. Annu. Rev. Physiol. 63, 555–578 (2001).

    Article  CAS  Google Scholar 

  23. Glasser, S.W. et al. Pneumonitis and emphysema in sp-C gene targeted mice. J. Biol. Chem. 278, 14291–14298 (2003).

    Article  CAS  Google Scholar 

  24. Cundell, D.R. & Tuomanen, E.I. Receptor specificity of adherence of Streptococcus pneumoniae to human type-II pneumocytes and vascular endothelial cells in vitro. Microb. Pathog. 17, 361–374 (1994).

    Article  CAS  Google Scholar 

  25. Kadioglu, A. et al. Use of green fluorescent protein in visualisation of pneumococcal invasion of broncho-epithelial cells in vivo. FEMS Microbiol. Lett. 194, 105–110 (2001).

    Article  CAS  Google Scholar 

  26. Ridsdale, R. & Post, M. Surfactant lipid synthesis and lamellar body formation in glycogen-laden type II cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L743–L751 (2004).

    Article  CAS  Google Scholar 

  27. Rannels, S.R., Rannels, S.L., Sneyd, J.G. & Loten, E.G. Fetal lung development in rats with a glycogen storage disorder. Am. J. Physiol. 260, L419–L427 (1991).

    CAS  PubMed  Google Scholar 

  28. Rooney, S.A. Regulation of surfactant secretion. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129, 233–243 (2001).

    Article  CAS  Google Scholar 

  29. Jounblat, R. et al. Binding and agglutination of Streptococcus pneumoniae by human surfactant protein D (SP-D) vary between strains, but SP-D fails to enhance killing by neutrophils. Infect. Immun. 72, 709–716 (2004).

    Article  CAS  Google Scholar 

  30. Barik, S. Site-directed mutagenesis in vitro by megaprimer PCR. Methods Mol. Biol. 57, 203–215 (1996).

    CAS  PubMed  Google Scholar 

  31. Boraston, A.B. et al. Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A. Biochemistry 40, 6240–6247 (2001).

    Article  CAS  Google Scholar 

  32. Ficko-Blean, E. & Boraston, A.B. Cloning, recombinant production, crystallization and preliminary X-ray diffraction studies of a family 84 glycoside hydrolase from Clostridium perfringens. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 61, 834–836 (2005).

    Article  CAS  Google Scholar 

  33. Mach, H., Middaugh, C.R. & Lewis, R.V. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal. Biochem. 200, 74–80 (1992).

    Article  CAS  Google Scholar 

  34. Tomme, P., Boraston, A., Kormos, J.M., Warren, R.A. & Kilburn, D.G. Affinity electrophoresis for the identification and characterization of soluble sugar binding by carbohydrate-binding modules. Enzyme Microb. Technol. 27, 453–458 (2000).

    Article  CAS  Google Scholar 

  35. Sigurskjold, B.W., Altman, E. & Bundle, D.R. Sensitive titration microcalorimetric study of the binding of Salmonella O-antigenic oligosaccharides by a monoclonal antibody. Eur. J. Biochem. 197, 239–246 (1991).

    Article  CAS  Google Scholar 

  36. Pflugrath, J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D Biol. Crystallogr. 55, 1718–1725 (1999).

    Article  CAS  Google Scholar 

  37. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  38. Evans, G. & Bricogne, G. Triiodide derivatization and combinatorial counter-ion replacement: two methods for enhancing phasing signal using laboratory Cu Kalpha X-ray equipment. Acta Crystallogr. D Biol. Crystallogr. 58, 976–991 (2002).

    Article  Google Scholar 

  39. Cowtan, K.D. & Zhang, K.Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999).

    Article  CAS  Google Scholar 

  40. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  43. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 56, 1622–1624 (2000).

    Article  CAS  Google Scholar 

  44. Brunger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  CAS  Google Scholar 

  45. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Chow for providing access to and assistance with the confocal imaging microscope. This work was supported by grants from the Canadian Institutes of Health Research and Natural Sciences and Engineering Council of Canada (A.B.B. and R.D.B.). A.L.v.B. is supported by doctoral fellowships from the Michael Smith Foundation for Health Research and the Natural Sciences and Engineering Research Council of Canada. A.B.B. is a Canada Research Chair in Molecular Interactions.

Author information

Authors and Affiliations

Authors

Contributions

A.L.v.B., cloning, protein production and purification, binding studies, crystallization, structure solution and analysis and figure and manuscript preparation; M.H., cloning and protein production and purification; D.W., lung section preparation and probing; R.D.B., fluorescence and confocal microscopic imaging and figure preparation; A.B.B., principle investigator and figure and manuscript preparation.

Corresponding author

Correspondence to Alisdair B Boraston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Bueren, A., Higgins, M., Wang, D. et al. Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors. Nat Struct Mol Biol 14, 76–84 (2007). https://doi.org/10.1038/nsmb1187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing