Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutational analysis reveals two independent molecular requirements during transfer RNA selection on the ribosome

Abstract

Accurate discrimination between cognate and near-cognate aminoacyl-tRNAs during translation relies on the specific acceleration of forward rate constants for cognate tRNAs. Such specific rate enhancement correlates with conformational changes in the tRNA and small ribosomal subunit that depend on an RNA-specific type of interaction, the A-minor motif, between universally conserved 16S ribosomal RNA nucleotides and the cognate codon-anticodon helix. We show that perturbations of these two components of the A-minor motif, the conserved rRNA bases and the codon-anticodon helix, result in distinct outcomes. Although both cause decreases in the rates of tRNA selection that are rescued by aminoglycoside antibiotics, only disruption of the codon-anticodon helix is overcome by a miscoding tRNA variant. On this basis, we propose that two independent molecular requirements must be met to allow tRNAs to proceed through the selection pathway, providing a mechanism for exquisite control of fidelity during this step in gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of conserved decoding-site nucleotides in cognate tRNA selection.
Figure 2: Effect of aminoglycosides on the decoding-site variant ribosomes.
Figure 3: Effect of a miscoding tRNA variant on the decoding-site variant ribosomes.
Figure 4: Scheme for a two-barrier model for tRNA selection.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rodnina, M.V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu. Rev. Biochem. 70, 415–435 (2001).

    Article  CAS  Google Scholar 

  2. Ogle, J.M. & Ramakrishnan, V. Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129–177 (2005).

    Article  CAS  Google Scholar 

  3. Gromadski, K.B. & Rodnina, M.V. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191–200 (2004).

    Article  CAS  Google Scholar 

  4. Pape, T., Wintermeyer, W. & Rodnina, M.V. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18, 3800–3807 (1999).

    Article  CAS  Google Scholar 

  5. Hopfield, J.J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71, 4135–4139 (1974).

    Article  CAS  Google Scholar 

  6. Ninio, J. Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595 (1975).

    Article  CAS  Google Scholar 

  7. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  8. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

  9. Carter, A.P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article  CAS  Google Scholar 

  10. Gromadski, K.B. & Rodnina, M.V. Streptomycin interferes with conformational coupling between codon recognition and GTPase activation on the ribosome. Nat. Struct. Mol. Biol. 11, 316–322 (2004).

    Article  CAS  Google Scholar 

  11. Pape, T., Wintermeyer, W. & Rodnina, M.V. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nat. Struct. Biol. 7, 104–107 (2000).

    Article  CAS  Google Scholar 

  12. Rodnina, M.V., Pape, T., Fricke, R., Kuhn, L. & Wintermeyer, W. Initial binding of the elongation factor Tu·GTP·aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271, 646–652 (1996).

    Article  CAS  Google Scholar 

  13. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  14. Cukras, A.R. & Green, R. Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation. J. Mol. Biol. 349, 47–59 (2005).

    Article  CAS  Google Scholar 

  15. Liiv, A. & O'Connor, M. Mutations in the intersubunit bridge regions of 23S rRNA. J. Biol. Chem. 281, 29850–29862 (2006).

    Article  CAS  Google Scholar 

  16. Cochella, L. & Green, R. An active role for tRNA in decoding beyond codon:anticodon pairing. Science 308, 1178–1180 (2005).

    Article  CAS  Google Scholar 

  17. Piepenburg, O. et al. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 39, 1734–1738 (2000).

    Article  CAS  Google Scholar 

  18. Favre, A., Buchingham, R. & Thomas, G. tRNA tertiary structure in solution as probed by the photochemically induced 8–13 cross-link. Nucleic Acids Res. 2, 1421–1431 (1975).

    Article  CAS  Google Scholar 

  19. Holbrook, S.R., Sussman, J.L., Warrant, R.W. & Kim, S.H. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J. Mol. Biol. 123, 631–660 (1978).

    Article  CAS  Google Scholar 

  20. Vacher, J. & Buckingham, R.H. Effect of photochemical crosslink S4U(8)-C(13) on suppressor activity of su+ tRNATrp from Escherichia coli. J. Mol. Biol. 129, 287–294 (1979).

    Article  CAS  Google Scholar 

  21. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10, 899–906 (2003).

    Article  CAS  Google Scholar 

  22. Doherty, E.A., Batey, R.T., Masquida, B. & Doudna, J.A. A universal mode of helix packing in RNA. Nat. Struct. Biol. 8, 339–343 (2001).

    Article  CAS  Google Scholar 

  23. Noller, H.F. RNA structure: reading the ribosome. Science 309, 1508–1514 (2005).

    Article  CAS  Google Scholar 

  24. Battle, D.J. & Doudna, J.A. Specificity of RNA-RNA helix recognition. Proc. Natl. Acad. Sci. USA 99, 11676–11681 (2002).

    Article  CAS  Google Scholar 

  25. Gromadski, K.B., Daviter, T. & Rodnina, M.V. A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. Mol. Cell 21, 369–377 (2006).

    Article  CAS  Google Scholar 

  26. Powers, T. & Noller, H.F. Dominant lethal mutations in a conserved loop in 16S rRNA. Proc. Natl. Acad. Sci. USA 87, 1042–1046 (1990).

    Article  CAS  Google Scholar 

  27. Yoshizawa, S., Fourmy, D. & Puglisi, J.D. Recognition of the codon-anticodon helix by ribosomal RNA. Science 285, 1722–1725 (1999).

    Article  CAS  Google Scholar 

  28. Abdi, N.M. & Fredrick, K. Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA 11, 1624–1632 (2005).

    Article  CAS  Google Scholar 

  29. Youngman, E.M., Brunelle, J.L., Kochaniak, A.B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004).

    Article  CAS  Google Scholar 

  30. Youngman, E.M. & Green, R. Affinity purification of in vivo-assembled ribosomes for in vitro biochemical analysis. Methods 36, 305–312 (2005).

    Article  CAS  Google Scholar 

  31. Pape, T., Wintermeyer, W. & Rodnina, M.V. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17, 7490–7497 (1998).

    Article  CAS  Google Scholar 

  32. Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971).

    Article  CAS  Google Scholar 

  33. Fahlman, R.P., Olejniczak, M. & Uhlenbeck, O.C. Quantitative analysis of deoxynucleotide substitutions in the codon-anticodon helix. J. Mol. Biol. 355, 887–892 (2006).

    Article  CAS  Google Scholar 

  34. Phelps, S.S., Jerinic, O. & Joseph, S. Universally conserved interactions between the ribosome and the anticodon stem-loop of A site tRNA important for translocation. Mol. Cell 10, 799–807 (2002).

    Article  CAS  Google Scholar 

  35. Potapov, A.P., Triana-Alonso, F.J. & Nierhaus, K.H. Ribosomal decoding processes at codons in the A or P sites depend differently on 2'-OH groups. J. Biol. Chem. 270, 17680–17684 (1995).

    Article  CAS  Google Scholar 

  36. Recht, M.I., Fourmy, D., Blanchard, S.C., Dahlquist, K.D. & Puglisi, J.D. RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J. Mol. Biol. 262, 421–436 (1996).

    Article  CAS  Google Scholar 

  37. Blanchard, S.C., Gonzalez, R.L., Kim, H.D., Chu, S. & Puglisi, J.D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004).

    Article  CAS  Google Scholar 

  38. Gourse, R.L., Takebe, Y., Sharrock, R.A. & Nomura, M. Feedback regulation of rRNA and tRNA synthesis and accumulation of free ribosomes after conditional expression of rRNA genes. Proc. Natl. Acad. Sci. USA 82, 1069–1073 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Youngman for developing the ribosome tagging and purification methodology, K. Gromadski and M. Rodnina for their technical advice, J. Lorsch, C. Merryman and E. Youngman for their comments and suggestions on the manuscript and O. Uhlenbeck, V. Ramakrishnan and G. Seydoux for valuable comments and discussions. We also thank the US National Institutes of Health for funding of the project and the Howard Hughes Medical Institute for salary support to R.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Saturating ribosome concentration in GTP hydrolysis reactions. (PDF 48 kb)

Supplementary Fig. 2

Dipeptide formation with excess ternary complex relative to ribosomes. (PDF 58 kb)

Supplementary Fig. 3

Saturating paromomycin concentration in dipeptide formation reactions. (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cochella, L., Brunelle, J. & Green, R. Mutational analysis reveals two independent molecular requirements during transfer RNA selection on the ribosome. Nat Struct Mol Biol 14, 30–36 (2007). https://doi.org/10.1038/nsmb1183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing