Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A folding control element for tertiary collapse of a group II intron ribozyme

Abstract

Ribozymes derived from the group II intron ai5γ collapse to a compact intermediate, folding to the native state through a slow, direct pathway that is unperturbed by kinetic traps. Molecular collapse of ribozyme D135 requires high magnesium concentrations and is thought to involve a structural element in domain 1 (D1). We used nucleotide analog interference mapping, in combination with nondenaturing gel electrophoresis, to identify RNA substructures and functional groups that are essential for D135 tertiary collapse. This revealed that the most crucial atoms for compaction are located within a small section of D1 that includes the κ and ζ elements. This small substructure controls specific collapse of the molecule and, in later steps of the folding pathway, it forms the docking site for catalytic D5. In this way, the stage is set for proper active site formation during the earliest steps of ribozyme folding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Summary of interferences and enhancements throughout D135.
Figure 3: Cluster I, the D5 docking site and the coordination loop.
Figure 4: Structural elements crucial for tertiary collapse versus catalysis.
Figure 5: The roles of κ and ζ elements in tertiary collapse versus docking of D5.

Similar content being viewed by others

References

  1. Sosnick, T.R. & Pan, T. RNA folding: models and perspectives. Curr. Opin. Struct. Biol. 13, 309–316 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Treiber, D.K. & Williamson, J.R. Exposing the kinetic traps in RNA folding. Curr. Opin. Struct. Biol. 9, 339–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Woodson, S.A. Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 9, 104–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Das, R. et al. The fastest global events in RNA folding: electrostatic relaxation and tertiary collapse of the Tetrahymena ribozyme. J. Mol. Biol. 332, 311–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Russell, R. et al. Rapid compaction during RNA folding. Proc. Natl. Acad. Sci. USA 99, 4266–4271 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Su, L.J., Waldsich, C. & Pyle, A.M. An obligate intermediate along the slow folding pathway of a group II intron ribozyme. Nucleic Acids Res. 33, 6674–6687 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buchmueller, K.L., Webb, A.E., Richardson, D.A. & Weeks, K.M. A collapsed non-native RNA folding state. Nat. Struct. Biol. 7, 362–366 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Rangan, P., Masquida, B., Westhof, E. & Woodson, S.A. Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA. J. Mol. Biol. 339, 41–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Basu, S. et al. A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Nat. Struct. Biol. 5, 986–992 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Shcherbakova, I., Gupta, S., Chance, M.R. & Brenowitz, M. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme. J. Mol. Biol. 342, 1431–1442 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Fang, X. et al. Mg2+-dependent compaction and folding of yeast tRNAPhe and the catalytic domain of the B. subtilis RNase P RNA determined by small-angle X-ray scattering. Biochemistry 39, 11107–11113 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Fang, X.W., Thiyagarajan, P., Sosnick, T. & Pan, T. The rate-limiting step in the folding of a large ribozyme without kinetic traps. Proc. Natl. Acad. Sci. USA 99, 8518–8523 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Swisher, J., Duarte, C., Su, L. & Pyle, A. Visualizing the solvent-inaccessible core of a group II intron ribozyme. EMBO J. 20, 2051–2061 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Swisher, J.F., Su, L., Brenowitz, M., Anderson, V. & Pyle, A. Productive folding to the native state by a group II intron ribozyme. J. Mol. Biol. 315, 297–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Su, L.J., Brenowitz, M. & Pyle, A.M. An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J. Mol. Biol. 334, 639–652 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Lehmann, K. & Schmidt, U. Group II introns: structure and catalytic versatility of large natural ribozymes. Crit. Rev. Biochem. Mol. Biol. 38, 249–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Pyle, A.M. & Lambowitz, A.M. Group II introns: ribozymes that splice RNA and invade DNA. in The RNA World (eds. Gesteland, R., Cech, T.R. & Atkins, J.F.) 469–506 (Cold Spring Harbor Press, Cold Spring Harbor, New York, USA, 2006).

    Google Scholar 

  18. Michel, F., Umesono, K. & Ozeki, H. Comparative and functional anatomy of group II catalytic introns–a review. Gene 82, 5–30 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Costa, M. & Michel, F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14, 1276–1285 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Costa, M., Deme, E., Jacquier, A. & Michel, F. Multiple tertiary interactions involving domain II of group II self-splicing introns. J. Mol. Biol. 267, 520–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Boudvillain, M. & Pyle, A.M. Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis. EMBO J. 17, 7091–7104 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boudvillain, M., Delencastre, A. & Pyle, A.M. A new RNA tertiary interaction that links active-site domains of a group II intron and anchors them at the site of catalysis. Nature 406, 315–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Fedorova, O. & Pyle, A.M. Linking the group II intron catalytic domains: tertiary contacts and structural features of domain 3. EMBO J. 24, 3906–3916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harris-Kerr, C.L., Zhang, M. & Peebles, C.L. The phylogenetically predicted base-pairing interaction between α and α' is required for group II splicing in vitro. Proc. Natl. Acad. Sci. USA 90, 10658–10662 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Michel, F. & Ferat, J.-L. Structure and activities of group II introns. Annu. Rev. Biochem. 64, 435–461 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Qin, P.Z. & Pyle, A.M. Stopped-flow fluorescence spectroscopy of a group II intron ribozyme reveals that domain 1 is an independent folding unit with a requirement for specific Mg2+ ions in the tertiary structure. Biochemistry 36, 4718–4730 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Strobel, S.A. A chemogenetic approach to RNA function/structure analysis. Curr. Opin. Struct. Biol. 9, 346–352 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Sigel, R.K., Vaidya, A. & Pyle, A. Metal ion binding sites in a group II intron core. Nat. Struct. Biol. 7, 1111–1116 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Butcher, S.E., Dieckmann, T. & Feigon, J. Solution structure of a GAAA tetraloop receptor RNA. EMBO J 16, 7490–7499 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Michels, W.J., Jr. & Pyle, A.M. Conversion of a group II intron into a new multiple-turnover ribozyme that selectively cleaves oligonucleotides: elucidation of reaction mechanism and structure/function relationships. Biochemistry 34, 2965–2977 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. de Lencastre, A., Hamill, S. & Pyle, A.M. A single active-site region for a group II intron. Nat. Struct. Mol. Biol. 12, 626–627 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Lilley, D.M. Folding of branched RNA species. Biopolymers 48, 101–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Jarrell, K.A., Dietrich, R. & Perlman, P. Group II intron domain 5 facilitates a trans-splicing reaction. Mol. Cell. Biol. 8, 2361–2366 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koch, J.L. et al. Introns deleted for multiple substructures retain self-splicing activity. Mol. Cell. Biol. 12, 1950–1958 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fedorova, O., Mitros, T. & Pyle, A.M. Domains 2 and 3 interact to form critical elements of the group II intron active site. J. Mol. Biol. 330, 197–209 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Podar, M., Dib-Hajj, S. & Perlman, P.S. A UV-induced Mg2+-dependent cross-link traps an active form of domain 3 of a self-splicing group II intron. RNA 1, 828–840 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Buchmueller, K.L. & Weeks, K.M. Near native structure in an RNA collapsed state. Biochemistry 42, 13869–13878 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Chauhan, S. et al. RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme. J. Mol. Biol. 353, 1199–1209 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Baird, N.J., Westhof, E., Qin, H., Pan, T. & Sosnick, T.R. Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. J. Mol. Biol. 352, 712–722 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Kwok, L.W. et al. Concordant exploration of the kinetics of RNA folding from global and local perspectives. J. Mol. Biol. 355, 282–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Su, L.J., Qin, P.Z., Michels, W.J. & Pyle, A.M. Guiding ribozyme cleavage through motif recognition: the mechanism of cleavage site selection by a group ii intron ribozyme. J. Mol. Biol. 306, 665–668 (2001).

    Article  Google Scholar 

  42. Su, L.J. The folding pathway and core structure assembly of a group II intron ribozyme. Ph.D.Thesis. Columbia Univ. (2002).

    Google Scholar 

  43. Chu, V.-T. Mechanism of branch-point selection in a catalytic group II intron. Ph.D. Thesis. Columbia Univ. (2000).

    Google Scholar 

  44. Huang, H.R. et al. The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc. Natl. Acad. Sci. USA 102, 163–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Xiang, Q., Qin, P.Z., Michels, W.J., Freeland, K. & Pyle, A.M. The sequence-specificity of a group II intron ribozyme: multiple mechanisms for promoting unusually high discrimination against mismatched targets. Biochemistry 37, 3839–3849 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Ryder, S.P., Ortoleva-Donnelly, L., Kosek, A.B. & Strobel, S.A. Chemical probing of RNA by nucleotide analog interference mapping. Methods Enzymol. 317, 92–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Padilla, R. & Sousa, R. Efficient synthesis of nucleic acids heavily modified with non-canonical ribose 2'-groups using a mutant T7 RNA polymerase (RNAP). Nucleic Acids Res. 27, 1561–1563 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, Z. & Szostak, J.W. A simple method for 3′-labeling of RNA. Nucleic Acids Res. 24, 4360–4361 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pyle, A.M., McSwiggen, J.A. & Cech, T.R. Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena. Proc. Natl. Acad. Sci. USA 87, 8187–8191 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fedorova, O., Boudvillain, M., Kawaoka, J. & Pyle, A.M. Nucleotide analog interference mapping and suppression: specific applications in studies of RNA tertiary structure, dynamic helicase mechanism and RNA–protein interactions. in Handbook in RNA Biochemistry 259–293 (Wiley-VCH, Weinheim, Germany, 2005).

    Chapter  Google Scholar 

  51. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank O. Fedorova for many helpful discussions and for critically reading the manuscript. We also thank T. Diep for helpful discussions, and we acknowledge G. Drews for excellent technical assistance. This work was supported by US National Institutes of Health grant GM50313 to A.M.P. and by a Schrödinger postdoctoral fellowship (J2332) from the Austrian Science Foundation to C.W. A.M.P. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Marie Pyle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Cluster I. (PDF 973 kb)

Supplementary Fig. 2

Cluster II. (PDF 1539 kb)

Supplementary Fig. 3

Cluster III. (PDF 1051 kb)

Supplementary Fig. 4

Mapping Domains 3 and 5. (PDF 1190 kb)

Supplementary Fig. 5

Catalytic activity and compaction. (PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldsich, C., Pyle, A. A folding control element for tertiary collapse of a group II intron ribozyme. Nat Struct Mol Biol 14, 37–44 (2007). https://doi.org/10.1038/nsmb1181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing