Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational restriction blocks glutamate receptor desensitization

Abstract

Desensitization is a universal feature of ligand-gated ion channels. Using the crystal structure of the GluR2 L483Y mutant channel as a guide, we attempted to build non-desensitizing kainate-subtype glutamate receptors. Success was achieved for GluR5, GluR6 and GluR7 with intermolecular disulfide cross-links but not by engineering the dimer interface. Crystallographic analysis of the GluR6 Y490C L752C dimer revealed relaxation from the active conformation, which functional studies reveal is not sufficient to trigger desensitization. The equivalent non-desensitizing cross-linked GluR2 mutant retained weak sensitivity to a positive allosteric modulator, which had no effect on GluR2 L483Y. These results establish that the active conformation of AMPA and kainate receptors is conserved and further show that their desensitization requires dimer rearrangements, that subtle structural differences account for their diverse functional properties and that the ligand-binding core dimer is a powerful regulator of ion-channel activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural basis for desensitization of glutamate receptor ion channels.
Figure 2: Protein engineering in the dimer interface does not generate non-desensitizing kainate receptors.
Figure 3: Ligand-binding domain dimer formation resulting from disulfide bond cross-links.
Figure 4: Non-desensitizing glutamate receptors created by ligand-binding core disulfide bond cross-links.
Figure 5: Modulation of desensitization by disulfide bond cleavage.
Figure 6: Analysis of disulfide bond–cross-linked receptors.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hille, B. Ionic channels of excitable membranes 3rd edn. (Sinauer Associates, Sunderland, Massachusetts, USA, 2001).

    Google Scholar 

  2. Jones, M.V. & Westbrook, G.L. The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci. 19, 96–101 (1996).

    Article  CAS  Google Scholar 

  3. Saviane, C. & Silver, R.A. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439, 983–987 (2006).

    Article  CAS  Google Scholar 

  4. Zorumski, C.F., Thio, L.L., Clark, G.D. & Clifford, D.B. Blockade of desensitization augments quisqualate excitotoxicity in hippocampal neurons. Neuron 5, 61–66 (1990).

    Article  CAS  Google Scholar 

  5. David, J.C., Yamada, K.A., Bagwe, M.R. & Goldberg, M.P. AMPA receptor activation is rapidly toxic to cortical astrocytes when desensitization is blocked. J. Neurosci. 16, 200–209 (1996).

    Article  CAS  Google Scholar 

  6. Sun, Y. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002).

    Article  CAS  Google Scholar 

  7. Horning, M.S. & Mayer, M.L. Regulation of AMPA receptor gating by ligand binding core dimers. Neuron 41, 379–388 (2004).

    Article  CAS  Google Scholar 

  8. Partin, K.M., Patneau, D.K., Winters, C.A., Mayer, M.L. & Buonanno, A. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavlin A. Neuron 11, 1069–1082 (1993).

    Article  CAS  Google Scholar 

  9. Partin, K.M., Bowie, D. & Mayer, M.L. Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron 14, 833–843 (1995).

    Article  CAS  Google Scholar 

  10. Stern-Bach, Y., Russo, S., Neuman, M. & Rosenmund, C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21, 907–918 (1998).

    Article  CAS  Google Scholar 

  11. Jin, R. et al. Mechanism of positive allosteric modulators acting on AMPA receptors. J. Neurosci. 25, 9027–9036 (2005).

    Article  CAS  Google Scholar 

  12. Lynch, G. Glutamate-based therapeutic approaches: ampakines. Curr. Opin. Pharmacol. 6, 82–88 (2006).

    Article  CAS  Google Scholar 

  13. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  14. Yelshansky, M.V., Sobolevsky, A.I., Jatzke, C. & Wollmuth, L.P. Block of AMPA receptor desensitization by a point mutation outside the ligand-binding domain. J. Neurosci. 24, 4728–4736 (2004).

    Article  CAS  Google Scholar 

  15. Fleck, M.W., Cornell, E. & Mah, S.J. Amino-acid residues involved in glutamate receptor 6 kainate receptor gating and desensitization. J. Neurosci. 23, 1219–1227 (2003).

    Article  CAS  Google Scholar 

  16. Smith, T.C. & Howe, J.R. Concentration-dependent substate behavior of native AMPA receptors. Nat. Neurosci. 3, 992–997 (2000).

    Article  CAS  Google Scholar 

  17. Bowie, D. & Lange, G.D. Functional stoichiometry of glutamate receptor desensitization. J. Neurosci. 22, 3392–3403 (2002).

    Article  CAS  Google Scholar 

  18. Paternain, A.V., Cohen, A., Stern-Bach, Y. & Lerma, J. A role for extracellular Na+ in the channel gating of native and recombinant kainate receptors. J. Neurosci. 23, 8641–8648 (2003).

    Article  CAS  Google Scholar 

  19. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000).

    Article  CAS  Google Scholar 

  20. Mayer, M.L., Olson, R. & Gouaux, E. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J. Mol. Biol. 311, 815–836 (2001).

    Article  CAS  Google Scholar 

  21. Nanao, M.H., Green, T., Stern-Bach, Y., Heinemann, S.F. & Choe, S. Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid. Proc. Natl. Acad. Sci. USA 102, 1708–1713 (2005).

    Article  CAS  Google Scholar 

  22. Furukawa, H., Singh, S.K., Mancusso, R. & Gouaux, E. Subunit arrangement and function in NMDA receptors. Nature 438, 185–192 (2005).

    Article  CAS  Google Scholar 

  23. Mayer, M.L., Ghosal, A., Dolman, N.P. & Jane, D.E. Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists. J. Neurosci. 26, 2852–2861 (2006).

    Article  CAS  Google Scholar 

  24. Hazes, B. & Dijkstra, B.W. Model building of disulfide bonds in proteins with known three-dimensional structure. Protein Eng. 2, 119–125 (1988).

    Article  CAS  Google Scholar 

  25. Paternain, A.V., Rodriguez-Moreno, A., Villarroel, A. & Lerma, J. Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology 37, 1249–1259 (1998).

    Article  CAS  Google Scholar 

  26. Bowie, D. External anions and cations distinguish between AMPA and kainate receptor gating mechanisms. J. Physiol. (Lond.) 539, 725–733 (2002).

    Article  CAS  Google Scholar 

  27. Armstrong, N., Mayer, M. & Gouaux, E. Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes. Proc. Natl. Acad. Sci. USA 100, 5736–5741 (2003).

    Article  CAS  Google Scholar 

  28. Koike, M., Tsukada, S., Tsuzuki, K., Kijima, H. & Ozawa, S. Regulation of kinetic properties of GluR2 AMPA receptor channels by alternative splicing. J. Neurosci. 20, 2166–2174 (2000).

    Article  CAS  Google Scholar 

  29. Hogner, A. et al. Structural basis for AMPA receptor activation and ligand selectivity: crystal structures of five agonist complexes with the GluR2 ligand-binding core. J. Mol. Biol. 322, 93 (2002).

    Article  CAS  Google Scholar 

  30. Jin, R., Banke, T.G., Mayer, M.L., Traynelis, S.F. & Gouaux, E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat. Neurosci. 6, 803–810 (2003).

    Article  CAS  Google Scholar 

  31. Mayer, M.L. Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 45, 539–552 (2005).

    Article  CAS  Google Scholar 

  32. Tichelaar, W., Safferling, M., Keinanen, K., Stark, H. & Madden, D.R. The three-dimensional structure of an ionotropic glutamate receptor reveals a dimer-of-dimers assembly. J. Mol. Biol. 344, 435–442 (2004).

    Article  CAS  Google Scholar 

  33. Nakagawa, T., Cheng, Y., Sheng, M. & Walz, T. Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins. Biol. Chem. 387, 179–187 (2006).

    Article  CAS  Google Scholar 

  34. Weston, M.C., Gertler, C., Mayer, M.L. & Rosenmund, C. Interdomain interactions in AMPA and kainate receptors regulate affinity for glutamate. J. Neurosci. 26, 7650–7658 (2006).

    Article  CAS  Google Scholar 

  35. Nakagawa, T., Cheng, Y., Ramm, E., Sheng, M. & Walz, T. Structure and different conformational states of native AMPA receptor complexes. Nature 433, 545–549 (2005).

    Article  CAS  Google Scholar 

  36. Armstrong, N., Jasti, J., Beich-Frandsen, M. & Gouaux, E. Structure of the desensitized state of ionotropic glutamate receptors. Cell 127, 85–97 (2006).

    Article  CAS  Google Scholar 

  37. Mayer, M.L. & Armstrong, N. Structure and function of glutamate receptor ion channels. Annu. Rev. Physiol. 66, 161–181 (2004).

    Article  CAS  Google Scholar 

  38. Vistica, J. et al. Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Anal. Biochem. 326, 234–256 (2004).

    Article  CAS  Google Scholar 

  39. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  Google Scholar 

  40. Otwinowski, Z. & Minor, W. DENZO and SCALEPACK. Int. Tables Crystallogr. F, 226–235 (2001).

    Article  Google Scholar 

  41. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  42. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    Article  Google Scholar 

  43. Jones, T.A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  44. Kleywegt, G.J., Zou, J.Y., Kjeldgaard, M. & Jones, T.A. Around O. Int. Tables Crystallogr. F, 353–356 (2001).

    Article  Google Scholar 

  45. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  46. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  47. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  48. Clements, J.D. & Westbrook, G.L. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7, 605–613 (1991).

    Article  CAS  Google Scholar 

  49. Colquhoun, D., Jonas, P. & Sakmann, B. Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J. Physiol. (Lond.) 458, 261–287 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Glasser for technical assistance, P. Seeburg (Max Planck Institute for Medical Research, Heidelberg) and S. Heinemann (Salk Institute for Biological Studies) for the gift of the wild-type GluR plasmids, H. Deng for help with cell culture, M. Zhang for help with protein purification and crystallization, H. Jaffe (Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke) for mass spectral analysis, E. Gouaux for sharing results before publication and A. Plested for reading the manuscript. Nucleic acid sequencing was performed by the National Institute of Neurological Disorders and Stroke DNA sequencing facility, Porter Neuroscience Research Center. This work was supported by the Brown foundation (C.R.), Neuroscience Training grant T32 GM008507 (M.C.W.) and the intramural research program of the National Institute of Child Health and Human Development, US National Institutes of Health, Department of Health and Human Services (M.L.M.).

Author information

Authors and Affiliations

Authors

Contributions

Electrophysiological experiments were performed by M.C.W., analytical ultracentrifugation by P.S., biochemistry and crystallography by M.L.M., molecular biology and biochemistry by A.G. Data was interpreted and the paper written by M.L.M., C.R. and M.C.W.

Corresponding author

Correspondence to Mark L Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weston, M., Schuck, P., Ghosal, A. et al. Conformational restriction blocks glutamate receptor desensitization. Nat Struct Mol Biol 13, 1120–1127 (2006). https://doi.org/10.1038/nsmb1178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing