Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the ribosome-bound cricket paralysis virus IRES RNA

Abstract

Internal ribosome entry sites (IRESs) facilitate an alternative, end-independent pathway of translation initiation. A particular family of dicistroviral IRESs can assemble elongation-competent 80S ribosomal complexes in the absence of canonical initiation factors and initiator transfer RNA. We present here a cryo-EM reconstruction of a dicistroviral IRES bound to the 80S ribosome. The resolution of the cryo-EM reconstruction, in the subnanometer range, allowed the molecular structure of the complete IRES in its active, ribosome-bound state to be solved. The structure, harboring three pseudoknot-containing domains, each with a specific functional role, shows how defined elements of the IRES emerge from a compactly folded core and interact with the key ribosomal components that form the A, P and E sites, where tRNAs normally bind. Our results exemplify the molecular strategy for recruitment of an IRES and reveal the dynamic features necessary for internal initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-EM map of the CrPV IRES RNA in complex with the yeast 80S ribosome.
Figure 2: Structure of the CrPV IRES RNA.
Figure 3: Molecular interactions of the CRPV IRES with the 80S ribosome.
Figure 4: Comparison of the CrPV IRES with the location of the A-, P- and E-site tRNAs.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

References

  1. Sonenberg, N. & Dever, T.E. Eukaryotic translation initiation factors and regulators. Curr. Opin. Struct. Biol. 13, 56–63 (2003).

    Article  CAS  Google Scholar 

  2. Dever, T.E. Gene-specific regulation by general translation factors. Cell 108, 545–556 (2002).

    Article  CAS  Google Scholar 

  3. Hellen, C.U. & Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 15, 1593–1612 (2001).

    Article  CAS  Google Scholar 

  4. Vagner, S., Galy, B. & Pyronnet, S. Irresistible IRES: attracting the translation machinery to internal ribosome entry sites. EMBO Rep. 2, 893–898 (2001).

    Article  CAS  Google Scholar 

  5. Stoneley, M. & Willis, A.E. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23, 3200–3207 (2004).

    Article  CAS  Google Scholar 

  6. Jackson, R.J. Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem. Soc. Trans. 33, 1231–1241 (2005).

    Article  CAS  Google Scholar 

  7. Sasaki, J. & Nakashima, N. Methionine-independent initiation of translation in the capsid protein of an insect RNA virus. Proc. Natl. Acad. Sci. USA 97, 1512–1515 (2000).

    Article  CAS  Google Scholar 

  8. Pestova, T.V. & Hellen, C.U. Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev. 17, 181–186 (2003).

    Article  CAS  Google Scholar 

  9. Wilson, J.E., Pestova, T.V., Hellen, C.U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell 102, 511–520 (2000).

    Article  CAS  Google Scholar 

  10. Jan, E., Goss Kinzy, T. & Sarnow, P. Divergent tRNA-like element supports initiation, elongation and termination of protein biosynthesis. Proc. Natl. Acad. Sci. USA 100, 15410–15415 (2003).

    Article  CAS  Google Scholar 

  11. Spahn, C.M.T. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291, 1962 (2001).

    Article  Google Scholar 

  12. Spahn, C.M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 118, 465–475 (2004).

    Article  CAS  Google Scholar 

  13. Thompson, S.R., Gulyas, K.D. & Sarnow, P. Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc. Natl. Acad. Sci. USA 98, 12972–12977 (2001).

    Article  CAS  Google Scholar 

  14. Halic, M., Becker, T., Frank, J., Spahn, C.M. & Beckmann, R. Localization and dynamic behavior of ribosomal protein L30e. Nat. Struct. Mol. Biol. 12, 467–468 (2005).

    Article  CAS  Google Scholar 

  15. Spahn, C.M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

    Article  CAS  Google Scholar 

  16. Jan, E. & Sarnow, P. Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J. Mol. Biol. 324, 889–902 (2002).

    Article  CAS  Google Scholar 

  17. Nishiyama, T. et al. Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. Nucleic Acids Res. 31, 2434–2442 (2003).

    Article  CAS  Google Scholar 

  18. Kanamori, Y. & Nakashima, N. A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA 7, 266–274 (2001).

    Article  CAS  Google Scholar 

  19. Pestova, T.V., Lomakin, I.B. & Hellen, C.U. Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly. EMBO Rep. 5, 906–913 (2004).

    Article  CAS  Google Scholar 

  20. Hilbers, C.W., Michiels, P.J. & Heus, H.A. New developments in structure determination of pseudoknots. Biopolymers 48, 137–153 (1998).

    Article  CAS  Google Scholar 

  21. Su, L., Chen, L., Egli, M., Berger, J.M. & Rich, A. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat. Struct. Biol. 6, 285–292 (1999).

    Article  CAS  Google Scholar 

  22. Battle, D.J. & Doudna, J.A. Specificity of RNA-RNA helix recognition. Proc. Natl. Acad. Sci. USA 99, 11676–11681 (2002).

    Article  CAS  Google Scholar 

  23. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  Google Scholar 

  24. Costantino, D. & Kieft, J.S. A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs. RNA 11, 332–343 (2005).

    Article  CAS  Google Scholar 

  25. Theimer, C.A., Blois, C.A. & Feigon, J. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17, 671–682 (2005).

    Article  CAS  Google Scholar 

  26. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  27. Spahn, C.M.T. et al. Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit-subunit interactions. Cell 107, 373–386 (2001).

    Article  CAS  Google Scholar 

  28. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).

    Article  CAS  Google Scholar 

  29. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  30. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  31. Bottcher, B., Wynne, S.A. & Crowther, R.A. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91 (1997).

    Article  CAS  Google Scholar 

  32. Chiu, W., Baker, M.L., Jiang, W., Dougherty, M. & Schmid, M.F. Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13, 363–372 (2005).

    Article  CAS  Google Scholar 

  33. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  34. Massire, C. & Westhof, E. MANIP: an interactive tool for modelling RNA. J. Mol. Graph. Model. 16, 197–205 255–7 (1998).

    Article  CAS  Google Scholar 

  35. Jones, T.A. & Kjeldgaard, M. Electron density map interpretation. Methods Enzymol. 277B, 173–207 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the VolkswagenStiftung (to C.M.T.S.), by US National Institutes of Health grant R01 GM60635 (to P.A.P.), by the sixth EU framework program 3DEM and by the European Union and Senatsverwaltung für Wissenschaft, Forschung und Kultur Berlin (UltraStructureNetwork and Anwenderzentrum). S.R.C. was supported with a grant from the Alexander von Humboldt Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M T Spahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Resolution curve. (PDF 462 kb)

Supplementary Fig. 2

Comparison of the PKIII pseudoknot with the BWYV pseudoknot. (PDF 2493 kb)

Supplementary Fig. 3

Annotated secondary structure diagram. (PDF 1382 kb)

Supplementary Fig. 4

Comparison of the human telomerase pseudoknot with PKI of the CrPV IRES. (PDF 1981 kb)

Supplementary Fig. 5

Interactions of the CRPV IRES with the 80S ribosome. (PDF 2623 kb)

Supplementary Methods (PDF 41 kb)

Supplementary Notes (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schüler, M., Connell, S., Lescoute, A. et al. Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat Struct Mol Biol 13, 1092–1096 (2006). https://doi.org/10.1038/nsmb1177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing