Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Dynamic roles for G4 DNA in the biology of eukaryotic cells

Abstract

Recent advances have made a persuasive case for the existence of G4 DNA in living cells, but what—if any—are its functions? Experiments have established how G4 DNA may contribute to the biology of eukaryotic cells, and genomic analysis has identified new ways in which the potential to form G4 DNA may influence gene regulation and genomic stability. This Perspective highlights those advances and identifies some key open questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: G-quartets and G4 DNA.
Figure 2: Formation of G4 DNA upon replication.
Figure 3: G4 DNA at telomeres.
Figure 4: G-rich S regions are targets of immunoglobulin heavy-chain class switch recombination.
Figure 5: G-loop formed in a transcribed G-rich region is bound by MutSα.

Similar content being viewed by others

References

  1. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988).

    Article  CAS  Google Scholar 

  2. Gellert, M., Lipsett, M.N. & Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 48, 2013–2018 (1962).

    Article  CAS  Google Scholar 

  3. Schaffitzel, C. et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl. Acad. Sci. USA 98, 8572–8577 (2001).

    Article  CAS  Google Scholar 

  4. Duquette, M.L., Handa, P., Vincent, J.A., Taylor, A.F. & Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 18, 1618–1629 (2004).

    Article  CAS  Google Scholar 

  5. Paeschke, K., Simonsson, T., Postberg, J., Rhodes, D. & Lipps, H.J. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat. Struct. Mol. Biol. 12, 847–854 (2005).

    Article  CAS  Google Scholar 

  6. Lee, J.Y., Okumus, B., Kim, D.S. & Ha, T. Extreme conformational diversity in human telomeric DNA. Proc. Natl. Acad. Sci. USA 102, 18938–18943 (2005).

    Article  CAS  Google Scholar 

  7. Phan, A.T., Kuryavyi, V. & Patel, D.J. DNA architecture: from G to Z. Curr. Opin. Struct. Biol. 16, 288–298 (2006).

    Article  CAS  Google Scholar 

  8. Wong, Z., Wilson, V., Patel, I., Povey, S. & Jeffreys, A.J. Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann. Hum. Genet. 51, 269–288 (1987).

    Article  CAS  Google Scholar 

  9. Huppert, J.L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005).

    Article  CAS  Google Scholar 

  10. Todd, A.K., Johnston, M. & Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 33, 2901–2907 (2005).

    Article  CAS  Google Scholar 

  11. Eddy, J. & Maizels, N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 34, 3887–3896 (2006).

    Article  CAS  Google Scholar 

  12. Siddiqui-Jain, A., Grand, C.L., Bearss, D.J. & Hurley, L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA 99, 11593–11598 (2002).

    Article  CAS  Google Scholar 

  13. Rankin, S. et al. Putative DNA quadruplex formation within the human c-kit oncogene. J. Am. Chem. Soc. 127, 10584–10589 (2005).

    Article  CAS  Google Scholar 

  14. Rawal, P. et al. Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res. 16, 644–655 (2006).

    Article  CAS  Google Scholar 

  15. Dempsey, L.A., Sun, H., Hanakahi, L.A. & Maizels, N. G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D: a role for G-G pairing in immunoglobulin switch recombination. J. Biol. Chem. 274, 1066–1071 (1999).

    Article  CAS  Google Scholar 

  16. Hanakahi, L.A., Sun, H. & Maizels, N. High affinity interactions of nucleolin with G-G-paired rDNA. J. Biol. Chem. 274, 15908–15912 (1999).

    Article  CAS  Google Scholar 

  17. Khateb, S., Weisman-Shomer, P., Hershco, I., Loeb, L.A. & Fry, M. Destabilization of tetraplex structures of the fragile X repeat sequence (CGG)n is mediated by homolog-conserved domains in three members of the hnRNP family. Nucleic Acids Res. 32, 4145–4154 (2004).

    Article  CAS  Google Scholar 

  18. Zhang, Q.S., Manche, L., Xu, R.M. & Krainer, A.R. hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA 12, 1116–1128 (2006).

    Article  CAS  Google Scholar 

  19. French, S.L., Osheim, Y.N., Cioci, F., Nomura, M. & Beyer, A.L. In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol. Cell. Biol. 23, 1558–1568 (2003).

    Article  CAS  Google Scholar 

  20. Sun, H., Karow, J.K., Hickson, I.D. & Maizels, N. The Bloom's syndrome helicase unwinds G4 DNA. J. Biol. Chem. 273, 27587–27592 (1998).

    Article  CAS  Google Scholar 

  21. Sun, H., Bennett, R.J. & Maizels, N. The S. cerevisiae Sgs1 helicase efficiently unwinds G-G paired DNAs. Nucleic Acids Res. 27, 1978–1984 (1999).

    Article  CAS  Google Scholar 

  22. Fry, M. & Loeb, L.A. Human Werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J. Biol. Chem. 274, 12797–12802 (1999).

    Article  CAS  Google Scholar 

  23. Wu, X. & Maizels, N. Substrate-specific inhibition of RecQ helicase. Nucleic Acids Res. 29, 1765–1771 (2001).

    Article  CAS  Google Scholar 

  24. Mohaghegh, P., Karow, J.K., Brosh, R.M. Jr., Bohr, V.A. & Hickson, I.D. The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res. 29, 2843–2849 (2001).

    Article  CAS  Google Scholar 

  25. Crabbe, L., Verdun, R.E., Haggblom, C.I. & Karlseder, J. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306, 1951–1953 (2004).

    Article  CAS  Google Scholar 

  26. Chang, S. et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36, 877–882 (2004).

    Article  CAS  Google Scholar 

  27. Mandell, J.G., Goodrich, K.J., Bahler, J. & Cech, T.R. Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. J. Biol. Chem. 280, 5249–5257 (2005).

    Article  CAS  Google Scholar 

  28. Huber, M.D., Duquette, M.L., Shiels, J.C. & Maizels, N. A conserved G4 DNA binding domain in RecQ family helicases. J. Mol. Biol. 358, 1071–1080 (2006).

    Article  CAS  Google Scholar 

  29. Cheung, I., Schertzer, M., Rose, A. & Lansdorp, P.M. Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat. Genet. 31, 405–409 (2002).

    Article  CAS  Google Scholar 

  30. Ding, H. et al. Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117, 873–886 (2004).

    Article  CAS  Google Scholar 

  31. Vaughn, J.P. et al. The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates. J. Biol. Chem. 280, 38117–38120 (2005).

    Article  CAS  Google Scholar 

  32. Sun, H., Yabuki, A. & Maizels, N. A human nuclease specific for G4 DNA. Proc. Natl. Acad. Sci. USA 98, 12444–12449 (2001).

    Article  CAS  Google Scholar 

  33. Liu, Z. & Gilbert, W. The yeast KEM1 gene encodes a nuclease specific for G4 tetraplex DNA: implication of in vivo functions for this novel DNA structure. Cell 77, 1083–1092 (1994).

    Article  CAS  Google Scholar 

  34. Ghosal, G. & Muniyappa, K. Saccharomyces cerevisiae Mre11 is a high-affinity G4 DNA-binding protein and a G-rich DNA-specific endonuclease: implications for replication of telomeric DNA. Nucleic Acids Res. 33, 4692–4703 (2005).

    Article  CAS  Google Scholar 

  35. Larson, E.D., Duquette, M.L., Cummings, W.J., Streiff, R.J. & Maizels, N. MutSalpha binds to and promotes synapsis of transcriptionally activated immunoglobulin switch regions. Curr. Biol. 15, 470–474 (2005).

    Article  CAS  Google Scholar 

  36. Zaug, A.J., Podell, E.R. & Cech, T.R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Natl. Acad. Sci. USA 102, 10864–10869 (2005).

    Article  CAS  Google Scholar 

  37. Oganesian, L., Moon, I.K., Bryan, T.M. & Jarstfer, M.B. Extension of G-quadruplex DNA by ciliate telomerase. EMBO J. 25, 1148–1159 (2006).

    Article  CAS  Google Scholar 

  38. Lipps, H.J., Gruissem, W. & Prescott, D.M. Higher order structure in macronuclear chromatin of the hypotrichous ciliate Oxytricha nova. Proc. Natl. Acad. Sci. USA 79, 2495–2499 (1982).

    Article  CAS  Google Scholar 

  39. Baumann, P. & Cech, T.R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  Google Scholar 

  40. Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126, 49–62 (2006).

    Article  CAS  Google Scholar 

  41. Hockemeyer, D., Daniels, J.P., Takai, H. & de Lange, T. Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell 126, 63–77 (2006).

    Article  CAS  Google Scholar 

  42. Lei, M., Podell, E.R., Baumann, P. & Cech, T.R. DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 426, 198–203 (2003).

    Article  CAS  Google Scholar 

  43. Opresko, P.L. et al. POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J. Biol. Chem. 280, 32069–32080 (2005).

    Article  CAS  Google Scholar 

  44. Ishikawa, F., Matunis, M.J., Dreyfuss, G. & Cech, T.R. Nuclear proteins that bind the pre-mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol. Cell. Biol. 13, 4301–4310 (1993).

    Article  CAS  Google Scholar 

  45. LaBranche, H. et al. Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat. Genet. 19, 199–202 (1998).

    Article  CAS  Google Scholar 

  46. Eversole, A. & Maizels, N. In vitro properties of the conserved mammalian protein hnRNP D suggest a role in telomere maintenance. Mol. Cell. Biol. 20, 5425–5432 (2000).

    Article  CAS  Google Scholar 

  47. Enokizono, Y. et al. Structure of hnRNP D complexed with single-stranded telomere DNA and unfolding of the quadruplex by heterogeneous nuclear ribonucleoprotein D. J. Biol. Chem. 280, 18862–18870 (2005).

    Article  CAS  Google Scholar 

  48. Duquette, M.L., Pham, P., Goodman, M.F. & Maizels, N. AID binds to transcription-induced structures in c-MYC that map to regions associated with translocation and hypermutation. Oncogene 24, 5791–5798 (2005).

    Article  CAS  Google Scholar 

  49. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    Article  CAS  Google Scholar 

  50. Li, X. & Manley, J.L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank members of my laboratory for provocative discussions, and the US National Institutes of Health for supporting our research on G4 DNA (R01 GM65988) and switch recombination (R01 GM39799).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maizels, N. Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat Struct Mol Biol 13, 1055–1059 (2006). https://doi.org/10.1038/nsmb1171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing