Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing

Abstract

Arrays of regularly spaced nucleosomes directly correlate with closed chromatin structures at silenced loci. The ATP-dependent chromatin-assembly factor (ACF) generates such arrays in vitro and is required for transcriptional silencing in vivo. A key unresolved question is how ACF 'measures' equal spacing between nucleosomes. We show that ACF senses flanking DNA length and transduces length information in an ATP-dependent manner to regulate the rate of nucleosome movement. Using fluorescence resonance energy transfer to follow nucleosome movement, we find that ACF can rapidly sample DNA on either side of a nucleosome and moves the longer flanking DNA across the nucleosome faster than the shorter flanking DNA. This generates a dynamic equilibrium in which nucleosomes having equal DNA on either side accumulate. Our results indicate that ACF generates the characteristic 50- to 60-base-pair internucleosomal spacing in silent chromatin by kinetically discriminating against shorter linker DNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ACF efficiently centers mononucleosomes.
Figure 2: Use of FRET to visualize nucleosome movement in real time.
Figure 3: ACF kinetically discriminates between different flanking DNA lengths.
Figure 4: Model for nucleosome centering by ACF.
Figure 5: Testing the predictions of the model.

Similar content being viewed by others

References

  1. Huisinga, K.L., Brower-Toland, B. & Elgin, S.C. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115, 110–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Sun, F.L., Cuaycong, M.H. & Elgin, S.C. Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol. Cell. Biol. 21, 2867–2879 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fyodorov, D.V., Blower, M.D., Karpen, G.H. & Kadonaga, J.T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 18, 170–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. & Kadonaga, J.T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Fazzio, T.G. et al. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol. Cell. Biol. 21, 6450–6460 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldmark, J.P., Fazzio, T.G., Estep, P.W., Church, G.M. & Tsukiyama, T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103, 423–433 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kang, J.G., Hamiche, A. & Wu, C. GAL4 directs nucleosome sliding induced by NURF. EMBO J. 21, 1406–1413 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mizuguchi, G., Tsukiyama, T., Wisniewski, J. & Wu, C. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol. Cell 1, 141–150 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Hamiche, A., Sandaltzopoulos, R., Gdula, D.A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Eberharter, A. et al. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodeling. EMBO J. 20, 3781–3788 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Langst, G., Bonte, E.J., Corona, D.F. & Becker, P.B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Tsukiyama, T., Palmer, J., Landel, C.C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686–697 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Varga-Weisz, P.D. et al. Chromatin-remodeling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Corona, D.F. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell 3, 239–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Poot, R.A. et al. HuCHRAC, a human ISWI chromatin remodeling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 19, 3377–3387 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. LeRoy, G., Orphanides, G., Lane, W.S. & Reinberg, D. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282, 1900–1904 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Fan, H.Y., He, X., Kingston, R.E. & Narlikar, G.J. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11, 1311–1322 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Bochar, D.A. et al. A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc. Natl. Acad. Sci. USA 97, 1038–1043 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279–16288 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. He, X., Narlikar, G.J., Fan, H.Y. & Kingston, R.E. HAcf1 alters the remodeling strategy of SNF2H. J. Biol. Chem. 281, 28636–28647 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Wolffe, A.P. & Hayes, J.J. Transcription factor interaction with model nucleosomal templates. Methods Mol. Genet. 2, 314–330 (1993).

    CAS  Google Scholar 

  25. Lohman, T.M., Thorn, K. & Vale, R.D. Staying on track: common features of DNA helicases and microtubule motors. Cell 93, 9–12 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Zofall, M., Persinger, J., Kassabov, S.R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13, 339–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Strohner, R. et al. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 12, 683–690 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kagalwala, M.N., Glaus, B.J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Langst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Fazzio, T.G. & Tsukiyama, T. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol. Cell 12, 1333–1340 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Zofall, M., Persinger, J. & Bartholomew, B. Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Mol. Cell. Biol. 24, 10047–10057 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Whitehouse, I., Stockdale, C., Flaus, A., Szczelkun, M.D. & Owen-Hughes, T. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23, 1935–1945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Amitani, I., Baskin, R.J. & Kowalczykowski, S.C. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol. Cell 23, 143–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Lia, G. et al. Direct observation of DNA distortion by the RSC complex. Mol. Cell 21, 417–425 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nat. Struct. Mol. Biol. 13, 633–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Flaus, A. & Owen-Hughes, T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23, 7767–7779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levenstein, M.E. & Kadonaga, J.T. Biochemical analysis of chromatin containing recombinant Drosophila core histones. J. Biol. Chem. 277, 8749–8754 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Aalfs, J.D., Narlikar, G.J. & Kingston, R.E. Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J. Biol. Chem. 276, 34270–34278 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Mukhopadhyay, J. et al. Translocation of sigma(70) with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA. Cell 106, 453–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Narlikar, G.J., Phelan, M.L. & Kingston, R.E. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8, 1219–1230 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Widom (Northwestern University) for the 601 plasmid, J.J. Hayes (University of Rochester Medical Center) for the 5S plasmid, H.-Y. Fan and R.E. Kingston (Harvard Medical School) for SNF2h and ACF1 constructs, R.D. Mullins (University of California, San Francisco) for use of the fluorometer, K. Ashrafi, H.-Y. Fan, J.T. Kadonaga, B. Panning, A.K. Srivastava, J.S. Weissman, J. Widom, C. Wu and K.R. Yamamoto for helpful comments on the manuscript and members of the Narlikar lab for technical advice and discussion. J.G.Y. is supported by a US National Science Foundation Graduate Research Fellowship. This work was supported in part by a grant from the US National Institutes of Health (to G.J.N.).

Author information

Authors and Affiliations

Authors

Contributions

J.G.Y., T.S.M. and G.J.N. designed the experiments, J.G.Y. and T.S.M. did the experiments and analyzed the data, E.S. made reagents for the experiments and J.G.Y. and G.J.N. interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Geeta J Narlikar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mapping histone octamer positions of mononucleosome substrates. (PDF 688 kb)

Supplementary Fig. 2

An alternative model for hACF centering. (PDF 175 kb)

Supplementary Fig. 3

Modeling mononucleosome centering by hACF. (PDF 389 kb)

Supplementary Fig. 4

Kinetics of remodeling at 2 mM ATP. (PDF 88 kb)

Supplementary Fig. 5

hACF remodeling is sequence independent. (PDF 167 kb)

Supplementary Fig. 6

hACF activity on 601 nucleosomes with varying flanking DNA lengths. (PDF 287 kb)

Supplementary Fig. 7

Restriction enzyme accessibility experiment. (PDF 68 kb)

Supplementary Fig. 8

Model for centering assuming hACF is a dimer. (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Madrid, T., Sevastopoulos, E. et al. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat Struct Mol Biol 13, 1078–1083 (2006). https://doi.org/10.1038/nsmb1170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing