Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The FtsK γ domain directs oriented DNA translocation by interacting with KOPS

Abstract

The bacterial septum-located DNA translocase FtsK coordinates circular chromosome segregation with cell division. Rapid translocation of DNA by FtsK is directed by 8-base-pair DNA motifs (KOPS), so that newly replicated termini are brought together at the developing septum, thereby facilitating completion of chromosome segregation. Translocase functions reside in three domains, α, β and γ. FtsKαβ are necessary and sufficient for ATP hydrolysis–dependent DNA translocation, which is modulated by FtsKγ through its interaction with KOPS. By solving the FtsKγ structure by NMR, we show that γ is a winged-helix domain. NMR chemical shift mapping localizes the DNA-binding site on the γ domain. Mutated proteins with substitutions in the FtsKγ DNA-recognition helix are impaired in DNA binding and KOPS recognition, yet remain competent in DNA translocation and XerCD-dif site-specific recombination, which facilitates the late stages of chromosome segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solution NMR structures of FtsKγ and FtsKγ-DNA binding.
Figure 2: FtsKγ recognizes KOPS.
Figure 3: KOPS recognition determined by triplex displacement.
Figure 4: FtsKγ binds KOPS DNA preferentially.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Rocha, E.P. Order and disorder in bacterial genomes. Curr. Opin. Microbiol. 7, 519–527 (2004).

    Article  CAS  Google Scholar 

  2. Barre, F.-X. & Sherratt, D.J. Chromosome dimer resolution. in The Bacterial Chromosome (ed. Higgins, N.P.) 513–524 (ASM Press, Washington, DC, 2005).

    Chapter  Google Scholar 

  3. Wang, X., Liu, X., Possoz, C. & Sherratt, D.J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20, 1727–1731 (2006).

    Article  CAS  Google Scholar 

  4. Blattner, F.R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).

    Article  CAS  Google Scholar 

  5. Lesterlin, C., Mercier, R., Boccard, F., Barre, F.X. & Cornet, F. Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome. EMBO Rep. 6, 557–562 (2005).

    Article  CAS  Google Scholar 

  6. Ip, S.C.Y., Bregu, M., Barre, F.-X. & Sherratt, D.J. Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J. 22, 6399–6407 (2003).

    Article  CAS  Google Scholar 

  7. Lesterlin, C., Barre, F-X. & Cornet, F. Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol. Microbiol. 54, 1151–1160 (2004).

    Article  CAS  Google Scholar 

  8. Errington, J., Bath, J. & Wu, L.J. DNA transport in bacteria. Nat. Rev. Mol. Cell Biol. 2, 538–545 (2001).

    Article  CAS  Google Scholar 

  9. Saleh, O.A., Perals, C., Barre, F.-X. & Allemand, J.-F. Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment. EMBO J. 23, 2430–2439 (2004).

    Article  CAS  Google Scholar 

  10. Pease, P.J. et al. Sequence-directed DNA translocation by purified FtsK. Science 307, 586–590 (2005).

    Article  CAS  Google Scholar 

  11. Bigot, S. et al. KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase. EMBO J. 24, 3770–3780 (2005).

    Article  CAS  Google Scholar 

  12. Levy, O. et al. Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase. Proc. Natl. Acad. Sci. USA 102, 17618–17623 (2005).

    Article  CAS  Google Scholar 

  13. Wang, X., Possoz, C. & Sherratt, D.J. Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli. Genes Dev. 19, 2367–2377 (2005).

    Article  CAS  Google Scholar 

  14. Yates, J. et al. Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase. Mol. Microbiol. 59, 1754–1766 (2006).

    Article  CAS  Google Scholar 

  15. Massey, T.H., Mercogliano, C.P., Yates, J., Sherratt, D.J. & Löwe, J. Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol. Cell 23, 457–469 (2006).

    Article  CAS  Google Scholar 

  16. Ptacin, J.L., Nollman, M., Bustamante, C. & Cozzarelli, N.R. Identification of the FtsK-recognition domain. Nat. Struct. Mol. Biol., advance online publication 15 October 2006 (doi:10.1038/nsmb1157).

  17. Gajiwala, K.S. & Burley, S.K. Winged helix proteins. Curr. Opin. Struct. Biol. 10, 110–116 (2000).

    Article  CAS  Google Scholar 

  18. Aravind, L. et al. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol. Rev. 29, 231–262 (2005).

    Article  CAS  Google Scholar 

  19. Holm, L. & Sander, C. Searching protein structure databases has come of age. Proteins 19, 165–173 (1994).

    Article  CAS  Google Scholar 

  20. Schwartz, T., Rould, M.A., Lowenhaupt, K., Herbert, A. & Rich, A. Crystal structure of the Za domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284, 1841–1845 (1999).

    Article  CAS  Google Scholar 

  21. Safo, M.K. et al. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator, mec. Acta Crystallograph. Sect. F. Struct. Biol. Cryst. Commun. 62, 320–324 (2006).

    Article  CAS  Google Scholar 

  22. Aussel, L. et al. FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108, 195–205 (2002).

    Article  CAS  Google Scholar 

  23. Singleton, M.R. et al. Conformational changes induced by nucleotide binding in Cdc6/ORC from Aeropyrum pernix. J. Mol. Biol. 343, 547–557 (2004).

    Article  CAS  Google Scholar 

  24. Ohnishi, T., Hishida, T., Harada, Y., Iwasaki, H. & Shinagawa, H. Structure-function analysis of the three domains of RuvB DNA motor protein. J. Biol. Chem. 280, 30504–30510 (2005).

    Article  CAS  Google Scholar 

  25. Oganesian, L., Moon, I.K., Bryan, T.M. & Jarstfer, M.B. Extension of G-quadruplex DNA by ciliate telomerase. EMBO J. 25, 1148–1159 (2006).

    Article  CAS  Google Scholar 

  26. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation modulation and high level expression by vectors containing the arabinose pBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  Google Scholar 

  27. Subramanya, H.S., Arciszewska, L.K., Baker, R.A., Bird, L.E., Sherratt, D.J. & Wigley, D.B. Crystal structure of the site-specific recombinase, XerD. EMBO J. 16, 5178–5187 (1997).

    Article  CAS  Google Scholar 

  28. Ferreira, H., Sherratt, D. & Arciszewska, L.K. Switching catalytic activity in the XerCD site-specific recombination machine. J. Mol. Biol. 312, 45–57 (2001).

    Article  CAS  Google Scholar 

  29. Wüthrich, K. NMR of protein and nucleic acids (John Wiley & Sons, New York, 1986).

  30. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516 (1989).

    Article  CAS  Google Scholar 

  31. Kraulis, P.J., Domaille, P.J., Campbell-Burk, S.L., Van Aken, T. & Laue, E.D. Solution structure and dynamics of Ras p21·GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 33, 3515–3531 (1994).

    Article  CAS  Google Scholar 

  32. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  33. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  34. Recchia, G.D., Aroyo, M., Wolf, D., Blakely, G. & Sherratt, D.J. FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J. 18, 5724–5734 (1999).

    Article  CAS  Google Scholar 

  35. Firman, K. & Szczelkun, M.D. Measuring motion on DNA by the type I restriction endonuclease EcoR124 using triplex displacement. EMBO J. 19, 2094–2102 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research was supported by the Medical Research Council (Cambridge) and the Wellcome Trust (Oxford). We acknowledge our collaborators in the N.R. Cozzarelli and C. Bustamante laboratories (University of California, Berkeley) and would like to dedicate this paper to N.R. Cozzarelli, who died while this work was in progress. We thank our Oxford colleagues, P. Antrobus for his help with mass spectroscopy and I. Grainge for valuable discussions. V.S. was supported by an Oxford University Clarendon Postgraduate Award.

Author information

Authors and Affiliations

Authors

Contributions

V.S., molecular biology and manuscript preparation. M.D.A., biochemistry, NMR and manuscript preparation. C.d.B., molecular biology. R.B., molecular biology. L.K.A., project direction and manuscript preparation. S.M.F., NMR. M.B., NMR. J.L., molecular biology, structural biology, project direction and manuscript preparation. D.J.S., project conception, project direction and manuscript preparation.

Corresponding author

Correspondence to David J Sherratt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

HSQC spectra of KOPS-FtsKγ interaction. (PDF 117 kb)

Supplementary Fig. 2

13C HSQC of E. coli FtsKγ. (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivanathan, V., Allen, M., de Bekker, C. et al. The FtsK γ domain directs oriented DNA translocation by interacting with KOPS. Nat Struct Mol Biol 13, 965–972 (2006). https://doi.org/10.1038/nsmb1158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing