Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and biochemical basis for misfolded RNA recognition by the Ro autoantigen

Abstract

The Ro autoantigen is ring-shaped, binds misfolded noncoding RNAs and is proposed to function in quality control. Here we determine how Ro interacts with misfolded RNAs. Binding of Ro to misfolded precursor (pre)-5S ribosomal RNA requires a single-stranded 3′ end and helical elements. As mutating most sequences of the helices and tail results in modest decreases in binding, Ro may be able to associate with a range of RNAs. Ro binds several other RNAs that contain single-stranded tails. A crystal structure of Ro bound to a misfolded pre-5S rRNA fragment reveals that the tail inserts into the cavity, while a helix binds on the surface. Most contacts of Ro with the helix are to the backbone. Mutagenesis reveals that Ro has an extensive RNA-binding surface. We propose that Ro uses this surface to scavenge RNAs that fail to bind their specific RNA-binding proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regions of misfolded pre-5S rRNA that are protected or structurally altered by Ro binding.
Figure 2: Ro contacts the tail and several helices in misfolded pre-5S rRNA.
Figure 3: Ro binding requires helical elements and a single-stranded tail of at least 5 nt.
Figure 4: Interactions of Ro with a fragment of misfolded pre-5S RNA.
Figure 5: Ro binds other noncoding RNAs that contain a single-stranded tail.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Storz, G., Altuvia, S. & Wassarman, K.M. An abundance of RNA regulators. Annu. Rev. Biochem. 74, 199–217 (2005).

    Article  CAS  Google Scholar 

  2. Li, Z., Reimers, S., Pandit, S. & Deutscher, M.P. RNA quality control: degradation of defective transfer RNA. EMBO J. 21, 1132–1138 (2002).

    Article  CAS  Google Scholar 

  3. Kadaba, S. et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev. 18, 1227–1240 (2004).

    Article  CAS  Google Scholar 

  4. Kadaba, S., Wang, X. & Anderson, J.T. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA 12, 508–521 (2006).

    Article  CAS  Google Scholar 

  5. Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006).

    Article  CAS  Google Scholar 

  6. Copela, L.A., Chakshusmathi, G., Sherrer, R.L. & Wolin, S.L. The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability. RNA 12, 644–654 (2006).

    Article  CAS  Google Scholar 

  7. Chen, X. & Wolin, S.L. The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity. J. Mol. Med. 82, 232–239 (2004).

    Article  CAS  Google Scholar 

  8. O'Brien, C.A. & Wolin, S.L. A possible role for the 60 kd Ro autoantigen in a discard pathway for defective 5S ribosomal RNA precursors. Genes Dev. 8, 2891–2903 (1994).

    Article  CAS  Google Scholar 

  9. Shi, H., O'Brien, C.A., Van Horn, D.J. & Wolin, S.L. A misfolded form of 5S rRNA is associated with the Ro and La autoantigens. RNA 2, 769–784 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, X. et al. The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival after UV irradiation. Curr. Biol. 13, 2206–2211 (2003).

    Article  CAS  Google Scholar 

  11. Chen, X., Quinn, A.M. & Wolin, S.L. Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. Genes Dev. 14, 777–782 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stein, A.J., Fuchs, G., Fu, C., Wolin, S.L. & Reinisch, K.M. Structural insights into RNA quality control: The Ro autoantigen binds misfolded RNAs via its central cavity. Cell 121, 529–539 (2005).

    Article  CAS  Google Scholar 

  13. Whittaker, C.A. & Hynes, R.O. Distribution and evolution of von Willebrand/Integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell 13, 3369–3387 (2002).

    Article  CAS  Google Scholar 

  14. Krol, A. & Carbon, P. A guide for probing native small nuclear RNA and ribonucleoprotein structures. Methods Enzymol. 180, 212–227 (1989).

    Article  CAS  Google Scholar 

  15. Hopper, A.K. & Phizicky, E.M. tRNA transfers to the limelight. Genes Dev. 17, 162–180 (2003).

    Article  CAS  Google Scholar 

  16. Will, C.L. & Luhrmann, R. Spliceosomal U snRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 13, 290–301 (2001).

    Article  CAS  Google Scholar 

  17. Filipowicz, W. & Pogacic, V. Biogenesis of small nucleolar ribonucleoproteins. Curr. Opin. Cell Biol. 14, 319–327 (2002).

    Article  CAS  Google Scholar 

  18. Conti, E., Muller, C.W. & Stewart, M. Karyopherin flexibility in nucleocytoplasmic transport. Curr. Opin. Struct. Biol. 16, 237–244 (2006).

    Article  CAS  Google Scholar 

  19. Hall, K.B. & Stump, W.T. Interaction of N-terminal domain of U1A protein with an RNA stem/loop. Nucleic Acids Res. 20, 4283–4290 (1992).

    Article  CAS  Google Scholar 

  20. Batey, R.T., Sagar, M.B. & Doudna, J.A. Structural and energetic analysis of RNA recognition by a universally conserved protein from the signal recognition particle. J. Mol. Biol. 307, 229–246 (2001).

    Article  CAS  Google Scholar 

  21. Aigner, S., Postberg, J., Lipps, H.J. & Cech, T.R. The Euplotes La motif protein p43 has properties of a telomerase-specific subunit. Biochemistry 42, 5736–5747 (2003).

    Article  CAS  Google Scholar 

  22. Green, C.D., Long, K.S., Shi, H. & Wolin, S.L. Binding of the 60-kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix. RNA 4, 750–765 (1998).

    Article  CAS  Google Scholar 

  23. Fok, V., Mitton-Fry, R.M., Grech, A. & Steitz, J.A. Multiple domains of EBER 1, an Epstein-Barr virus noncoding RNA, recruit human ribosomal protein L22. RNA 12, 872–882 (2006).

    Article  CAS  Google Scholar 

  24. Dong, G., Chakshusmathi, G., Wolin, S.L. & Reinisch, K.M. Structure of the La motif: a winged helix domain mediates RNA binding via a conserved aromatic patch. EMBO J. 23, 1000–1007 (2004).

    Article  CAS  Google Scholar 

  25. Fernandez, C.F., Pannone, B.K., Chen, X., Fuchs, G. & Wolin, S.L. An Lsm2-Lsm7 complex in Saccharomyces cerevisiae associates with the small nucleolar RNA snR5. Mol. Biol. Cell 15, 2842–2852 (2004).

    Article  CAS  Google Scholar 

  26. Baserga, S.J., Yang, X.W. & Steitz, J.A. An intact box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs. EMBO J. 10, 2645–2651 (1991).

    Article  CAS  Google Scholar 

  27. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  29. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  30. Nicholls, A. GRASP: Graphical Representation and Analysis of Surface Properties (Columbia University, New York, 1993).

    Google Scholar 

  31. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  32. Szymanski, M., Barciszewska, M.Z., Erdmann, V.A. & Barciszewski, J. 5S rRNA: structure and interactions. Biochem. J. 371, 641–651 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Alexandrov, S. Sim, E. Ullu and E. Wurtmann for comments on the manuscript and S. Baserga (Yale University) and J. Steitz (Yale University) for gifts of plasmids. We are grateful to the staff at beamline X25 at the Brookhaven National Laboratory for assistance with data collection. A.J.S. was supported by a fellowship from the Arthritis Foundation. This work was funded by grants from the US National Institutes of Health (R01-GM073863 to S.L.W. and R01-GM70521 to K.M.R.) and the Pew Charitable Trust (to K.M.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karin M Reinisch or Sandra L Wolin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Difference electron density maps for RNA. (PDF 1562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, G., Stein, A., Fu, C. et al. Structural and biochemical basis for misfolded RNA recognition by the Ro autoantigen. Nat Struct Mol Biol 13, 1002–1009 (2006). https://doi.org/10.1038/nsmb1156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing