Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amino acid residues in Rag1 crucial for DNA hairpin formation

Abstract

The Rag proteins carry out V(D)J recombination through a process mechanistically similar to cut-and-paste transposition. Specifically, Rag complexes form DNA hairpins through direct transesterification, using a catalytic Asp-Asp-Glu (DDE) triad in Rag1. How is sufficient DNA distortion introduced to allow hairpin formation? We hypothesized that, like certain transposases, the Rag proteins might use aromatic amino acid residues to stabilize a flipped-out base. Through in vivo and in vitro experiments and structural predictions, we identified residues in Rag1 crucial for hairpin formation. One of these, a conserved tryptophan (Trp893), probably participates in base-stacking interactions near the cleavage site, as do Trp298, Trp265 and Trp319 in the Tn5, Tn10 and Hermes transposases, respectively. Other residues surrounding the catalytic glutamate (YKEFRK) may share functional similarities with the YREK motif in IS4 family transposases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An unbiased search for residues involved in hairpin formation.
Figure 2: Analysis of cleavage reactions on matched or mismatched (MM) oligonucleotide substrates.
Figure 3: Weak hairpin activity of W893A and Y935A stimulated by synapsis.
Figure 4: Structure of Hermes transposase, highlighting potential positions of mechanistically important residues in Rag1.

Similar content being viewed by others

References

  1. Roth, D.B. Restraining the V(D)J recombinase. Nat. Rev. Immunol. 3, 656–666 (2003).

    Article  CAS  Google Scholar 

  2. Roth, D.B. & Craig, N.L. VDJ recombination: A transposase goes to work. Cell 94, 411–414 (1998).

    Article  CAS  Google Scholar 

  3. Haren, L., Ton-Hoang, B. & Chandler, M. Integrating DNA: transposases and retroviral integrases. Annu. Rev. Microbiol. 53, 245–281 (1999).

    Article  CAS  Google Scholar 

  4. Gellert, M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71, 101–132 (2002).

    Article  CAS  Google Scholar 

  5. Roth, D.B., Menetski, J.P., Nakajima, P.B., Bosma, M.J. & Gellert, M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70, 983–991 (1992).

    Article  CAS  Google Scholar 

  6. McBlane, J.F. et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83, 387–395 (1995).

    Article  CAS  Google Scholar 

  7. van Gent, D.C., Mizuuchi, K. & Gellert, M. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271, 1592–1594 (1996).

    Article  CAS  Google Scholar 

  8. Agrawal, A., Eastman, Q.M. & Schatz, D.G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    Article  CAS  Google Scholar 

  9. Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).

    Article  CAS  Google Scholar 

  10. Kennedy, A.K., Guhathakurta, A., Kleckner, N. & Haniford, D.B. Tn10 transposition via a DNA hairpin intermediate. Cell 95, 125–134 (1998).

    Article  CAS  Google Scholar 

  11. Bhasin, A., Goryshin, I.Y. & Reznikoff, W.S. Hairpin formation in Tn5 transposition. J. Biol. Chem. 274, 37021–37029 (1999).

    Article  CAS  Google Scholar 

  12. Zhou, L. et al. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432, 995–1001 (2004).

    Article  CAS  Google Scholar 

  13. Bolland, S. & Kleckner, N. The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site. Cell 84, 223–233 (1996).

    Article  CAS  Google Scholar 

  14. Davies, D.R., Mahnke Braam, L., Reznikoff, W.S. & Rayment, I. The three-dimensional structure of a Tn5 transposase-related protein determined to 2.9-Å resolution. J. Biol. Chem. 274, 11904–11913 (1999).

    Article  CAS  Google Scholar 

  15. Kulkosky, J., Jones, K.S., Katz, R.A., Mack, J.P.G. & Skalka, A.M. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12, 2331–2338 (1992).

    Article  CAS  Google Scholar 

  16. Grindley, N.D.F. & Leschziner, A.E. DNA transposition: From a black box to a color monitor. Cell 83, 1063–1066 (1995).

    Article  CAS  Google Scholar 

  17. Rice, P.A. & Baker, T.A. Comparative architecture of transposase and integrase complexes. Nat. Struct. Biol. 8, 302–307 (2001).

    Article  CAS  Google Scholar 

  18. Kim, D.R., Dai, Y., Mundy, C.L., Yang, W. & Oettinger, M.A. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13, 3070–3080 (1999).

    Article  CAS  Google Scholar 

  19. Landree, M.A., Wibbenmeyer, J.A. & Roth, D.B. Mutational analysis of RAG-1 and RAG-2 identifies three active site amino acids in RAG-1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13, 3059–3069 (1999).

    Article  CAS  Google Scholar 

  20. Fugmann, S.D., Villey, I.J., Ptaszek, L.M. & Schatz, D.G. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell 5, 97–107 (2000).

    Article  CAS  Google Scholar 

  21. Cuomo, C.A., Mundy, C.L. & Oettinger, M.A. DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences. Mol. Cell. Biol. 16, 5683–5690 (1996).

    Article  CAS  Google Scholar 

  22. Ramsden, D.A., McBlane, J.F., van Gent, D.C. & Gellert, M. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBO J. 15, 3197–3206 (1996).

    Article  CAS  Google Scholar 

  23. Kale, S.B., Landree, M.A. & Roth, D.B. Conditional RAG-1 mutants block the hairpin formation step of V(D)J recombination. Mol. Cell. Biol. 21, 459–466 (2001).

    Article  CAS  Google Scholar 

  24. Davies, D.R., Goryshin, I.Y., Reznikoff, W.S. & Rayment, I. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289, 77–85 (2000).

    Article  CAS  Google Scholar 

  25. Ason, B. & Reznikoff, W.S. Mutational analysis of the base flipping event found in Tn5 transposition. J. Biol. Chem. 277, 11284–11291 (2002).

    Article  CAS  Google Scholar 

  26. Allingham, J.S., Wardle, S.J. & Haniford, D.B. Determinants for hairpin formation in Tn10 transposition. EMBO J. 20, 2931–2942 (2001).

    Article  CAS  Google Scholar 

  27. Hickman, A.B. et al. Molecular architecture of a eukaryotic DNA transposase. Nat. Struct. Mol. Biol. 12, 715–721 (2005).

    Article  CAS  Google Scholar 

  28. Steen, S.B., Gomelsky, L., Speidel, S.L. & Roth, D.B. Initiation of V(D)J recombination in vivo: role of recombination signal sequences in formation of single and paired double-strand breaks. EMBO J. 16, 2656–2664 (1997).

    Article  CAS  Google Scholar 

  29. Huye, L.E., Purugganan, M.M., Jiang, M.M. & Roth, D.B. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol. Cell. Biol. 22, 3460–3473 (2002).

    Article  CAS  Google Scholar 

  30. Naumann, T.A. & Reznikoff, W.S. Tn5 transposase active site mutants. J. Biol. Chem. 2771, 17623–17629 (2002).

    Article  Google Scholar 

  31. Zhang, J. et al. Novel RAG1 mutation in a case of severe combined immunodeficiency. Pediatrics 116, e445–e449 (2005).

    Article  Google Scholar 

  32. Mahillon, J., Seurinck, J., van Rompuy, L., Delcour, J. & Zabeau, M. Nucleotide sequence and structural organization of an insertion sequence element (IS231) from Bacillus thuringiensis strain berliner 1715. EMBO J. 4, 3895–3899 (1985).

    Article  CAS  Google Scholar 

  33. Rezsohazy, R., Hallet, B., Delcour, J. & Mahillon, J. The IS4 family of insertion sequences: evidence for a conserved transposase motif. Mol. Microbiol. 9, 1283–1295 (1993).

    Article  CAS  Google Scholar 

  34. Spanopoulou, E. et al. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87, 263–276 (1996).

    Article  CAS  Google Scholar 

  35. Deng, W.P. & Nickoloff, J.A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem. 200, 81–88 (1992).

    Article  CAS  Google Scholar 

  36. Han, J.-O., Steen, S.B. & Roth, D.B. Ku86 is not required for protection of signal ends or for formation of nonstandard V(D)J recombination products. Mol. Cell. Biol. 17, 2226–2234 (1997).

    Article  CAS  Google Scholar 

  37. Rost, B., Yachdav, G. & Liu, J. The PredictProtein server. Nucleic Acids Res. 32, W321–W326 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Roth laboratory for thoughtful discussions and comments on the manuscript and G. Weller for unpublished data. This work was supported by US National Institutes of Health grant AI36420 and funding from the Irene Diamond Foundation (to D.B.R.).

Author information

Authors and Affiliations

Authors

Contributions

H.S. began the mutagenesis project while a student in the Roth lab at Baylor College of Medicine. C.P.L. performed all the experiments shown; P.A.R. performed the structural predictions and analysis; C.P.L., V.L.B. and D.B.R. thought about experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to David B Roth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Nicking and hairpin formation by Rag1/Rag2. (PDF 182 kb)

Supplementary Fig. 2

Time-course analysis and prenicked substrate experiments. (PDF 500 kb)

Supplementary Fig. 3

Comparative alignment of Tn5, Tn10 and Rag1. (PDF 184 kb)

Supplementary Fig. 4

Rough alignment of proposed catalytic domains of Hermes and Rag1. (PDF 79 kb)

Supplementary Table 1

Oligonucleotide sequences. (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, C., Sandoval, H., Brandt, V. et al. Amino acid residues in Rag1 crucial for DNA hairpin formation. Nat Struct Mol Biol 13, 1010–1015 (2006). https://doi.org/10.1038/nsmb1154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing