Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Convergent evolution of clamp-like binding sites in diverse chaperones

Abstract

Molecular chaperones have evolved diverse tertiary and quaternary structures to stabilize non-native polypeptides and facilitate their transition to the native state. Indeed, different families of chaperones lack sequence similarity, and few are represented ubiquitously in all three domains of life. Despite their discrete evolutionary paths, recent crystal structures reveal that many chaperones use seemingly convergent strategies to bind non-native proteins. This crystallographic evidence shows, or strongly suggests, that chaperones including prefoldin, Skp, trigger factor, Hsp40 and Hsp90 have clamp-like structural features used to grip substrate proteins. We explore the notion that clamp-like structures are evolutionarily favored by both ATP-dependent and ATP-independent molecular chaperones. Presumably, clamps present a multivalent binding surface ideal for protecting unstable protein conformers until they reach the native state or are transferred to another component of the folding machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of trigger factor and proteins with trigger factor–like folds.
Figure 2: E. coli Hsp70 (DnaK) and S. cerevisiae Hsp40 (Sis1) structures.
Figure 3: Structural comparison of prefoldin, Skp and Tim9–Tim10.
Figure 4: Hsp90 adopts a dimeric clamp-like structure.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001).

    Article  CAS  Google Scholar 

  2. Hartl, F.U. & Hayer-Hartl, M. Protein folding—molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  3. Stirling, P.C., Lundin, V.F. & Leroux, M.R. Getting a grip on non-native proteins. EMBO Rep. 4, 565–570 (2003).

    Article  CAS  Google Scholar 

  4. Wickner, S., Maurizi, M.R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).

    Article  CAS  Google Scholar 

  5. Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917 (1997).

    Article  CAS  Google Scholar 

  6. Hesterkamp, T., Hauser, S., Lutcke, H. & Bukau, B. Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc. Natl Acad. Sci. USA 93, 4437–4441 (1996).

    Article  CAS  Google Scholar 

  7. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002).

    Article  CAS  Google Scholar 

  8. Gautschi, M. et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc. Natl Acad. Sci. USA 98, 3762–3767 (2001).

    Article  CAS  Google Scholar 

  9. Gautschi, M., Mun, A., Ross, S. & Rospert, S. A functional chaperone triad on the yeast ribosome. Proc. Natl Acad. Sci. USA 99, 4209–4214 (2002).

    Article  CAS  Google Scholar 

  10. Hundley, H.A., Walter, W., Bairstow, S. & Craig, E.A. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032–1034 (2005).

    Article  CAS  Google Scholar 

  11. Macario, A.J. & Conway De Macario, E. The molecular chaperone system and other anti-stress mechanisms in archaea. Front. Biosci. 6, D262–D283 (2001).

    Article  CAS  Google Scholar 

  12. Geissler, S., Siegers, K. & Schiebel, E. A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J. 17, 952–966 (1998).

    Article  CAS  Google Scholar 

  13. Martin-Benito, J. et al. Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J. 21, 6377–6386 (2002).

    Article  CAS  Google Scholar 

  14. Leroux, M.R. et al. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J. 18, 6730–6743 (1999).

    Article  CAS  Google Scholar 

  15. Siegers, K. et al. Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J. 18, 75–84 (1999).

    Article  CAS  Google Scholar 

  16. Vainberg, I.E. et al. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93, 863–873 (1998).

    Article  CAS  Google Scholar 

  17. Leroux, M.R. & Hartl, F.U. Protein folding: versatility of the cytosolic chaperonin TRiC/CCT. Curr. Biol. 10, R260–R264 (2000).

    Article  CAS  Google Scholar 

  18. Spiess, C., Meyer, A.S., Reissmann, S. & Frydman, J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 14, 598–604 (2004).

    Article  CAS  Google Scholar 

  19. Hohfeld, J., Cyr, D.M. & Patterson, C. From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep. 2, 885–890 (2001).

    Article  CAS  Google Scholar 

  20. Bulieris, P.V., Behrens, S., Holst, O. & Kleinschmidt, J.H. Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide. J. Biol. Chem. 278, 9092–9099 (2003).

    Article  CAS  Google Scholar 

  21. Bitto, E. & McKay, D.B. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10, 1489–1498 (2002).

    Article  CAS  Google Scholar 

  22. Webb, C.T., Gorman, M.A., Lazarou, M., Ryan, M.T. & Gulbis, J.M. Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol. Cell 21, 123–133 (2006).

    Article  CAS  Google Scholar 

  23. Ferbitz, L. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590–596 (2004).

    Article  CAS  Google Scholar 

  24. Korndorfer, I.P., Dommel, M.K. & Skerra, A. Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat. Struct. Mol. Biol. 11, 1015–1020 (2004).

    Article  Google Scholar 

  25. Li, J., Oian, X.G. & Sha, B. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11, 1475–1483 (2003).

    Article  CAS  Google Scholar 

  26. Ludlam, A.V., Moore, B.A. & Xu, Z. The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. Proc. Natl Acad. Sci. USA 101, 13436–13441 (2004).

    Article  CAS  Google Scholar 

  27. Sha, B., Lee, S. & Cyr, D.M. The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure 8, 799–807 (2000).

    Article  CAS  Google Scholar 

  28. Siegert, R., Leroux, M.R., Scheufler, C., Hartl, F.U. & Moarefi, I. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103, 621–632 (2000).

    Article  CAS  Google Scholar 

  29. Walton, T.A. & Sousa, M.C. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15, 367–374 (2004).

    Article  CAS  Google Scholar 

  30. Harris, S.F., Shiau, A.K. & Agard, D.A. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12, 1087–1097 (2004).

    Article  CAS  Google Scholar 

  31. Huai, Q. et al. Structures of the N-terminal and middle domains of E. coli Hsp90 and conformation changes upon ADP binding. Structure 13, 579–590 (2005).

    Article  CAS  Google Scholar 

  32. Zhu, X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614 (1996).

    Article  CAS  Google Scholar 

  33. Ali, M.M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    Article  CAS  Google Scholar 

  34. Lu, J. & Deutsch, C. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12, 1123–1129 (2005).

    Article  CAS  Google Scholar 

  35. Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    Article  CAS  Google Scholar 

  36. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  37. Kramer, G. et al. Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J. Biol. Chem. 279, 14165–14170 (2004).

    Article  CAS  Google Scholar 

  38. Hesterkamp, T., Deuerling, E. & Bukau, B. The amino-terminal 118 amino acids of Escherichia coli trigger factor constitute a domain that is necessary and sufficient for binding to ribosomes. J. Biol. Chem. 272, 21865–21871 (1997).

    Article  CAS  Google Scholar 

  39. Behrens, S., Maier, R., de Cock, H., Schmid, F.X. & Gross, C.A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20, 285–294 (2001).

    Article  CAS  Google Scholar 

  40. Schulze-Gahmen, U. et al. Structure of the hypothetical Mycoplasma protein MPN555 suggests a chaperone function. Acta Crystallogr. D Biol. Crystallogr. 61, 1343–1347 (2005).

    Article  Google Scholar 

  41. Mayer, M.P. et al. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 7, 586–593 (2000).

    Article  CAS  Google Scholar 

  42. Jiang, J., Prasad, K., Lafer, E.M. & Sousa, R. Structural basis of interdomain communication in the Hsc70 chaperone. Mol. Cell 20, 513–524 (2005).

    Article  CAS  Google Scholar 

  43. Lee, S., Fan, C.Y., Younger, J.M., Ren, H. & Cyr, D.M. Identification of essential residues in the type II Hsp40 Sis1 that function in polypeptide binding. J. Biol. Chem. 277, 21675–21682 (2002).

    Article  CAS  Google Scholar 

  44. Rudiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507 (1997).

    Article  CAS  Google Scholar 

  45. Rudiger, S., Schneider-Mergener, J. & Bukau, B. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J. 20, 1042–1050 (2001).

    Article  CAS  Google Scholar 

  46. Okochi, M. et al. Kinetics and binding sites for interaction of the prefoldin with a group II chaperonin—contiguous non-native substrate and chaperonin binding sites in the archaeal prefoldin. J. Biol. Chem. 279, 31788–31795 (2004).

    Article  CAS  Google Scholar 

  47. Lundin, V.F. et al. Molecular clamp mechanism of substrate binding by hydrophobic coiled-coil residues of the archaeal chaperone prefoldin. Proc. Natl Acad. Sci. USA 101, 4367–4372 (2004).

    Article  CAS  Google Scholar 

  48. Siegers, K. et al. TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes. EMBO J. 22, 5230–5240 (2003).

    Article  CAS  Google Scholar 

  49. Schafer, U., Beck, K. & Muller, M. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999).

    Article  CAS  Google Scholar 

  50. Koehler, C.M. et al. Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. EMBO J. 17, 6477–6486 (1998).

    Article  CAS  Google Scholar 

  51. Vial, S. et al. Assembly of Tim9 and Tim10 into a functional chaperone. J. Biol. Chem. 277, 36100–36108 (2002).

    Article  CAS  Google Scholar 

  52. Vergnolle, M.A. et al. Distinct domains of small Tims involved in subunit interaction and substrate recognition. J. Mol. Biol. 351, 839–849 (2005).

    Article  CAS  Google Scholar 

  53. Rehling, P., Brandner, K. & Pfanner, N. Mitochondrial import and twin-pore translocase. Nat. Rev. Mol. Cell Biol. 5, 519–530 (2004).

    Article  CAS  Google Scholar 

  54. Wiedemann, N., Pfanner, N. & Chacinska, A. Chaperoning through the mitochondrial intermembrane space. Mol. Cell 21, 145–148 (2006).

    Article  CAS  Google Scholar 

  55. Young, J.C., Hoogenraad, N.J. & Hartl, F.U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003).

    Article  CAS  Google Scholar 

  56. Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–727 (2005).

    Article  CAS  Google Scholar 

  57. Prodromou, C. et al. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. EMBO J. 19, 4383–4392 (2000).

    Article  CAS  Google Scholar 

  58. Meyer, P. et al. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 11, 647–658 (2003).

    Article  CAS  Google Scholar 

  59. Young, J.C. & Hartl, F.U. Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO J. 19, 5930–5940 (2000).

    Article  CAS  Google Scholar 

  60. Lee, S. et al. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).

    Article  CAS  Google Scholar 

  61. Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800–805 (2000).

    Article  CAS  Google Scholar 

  62. Sousa, M.C. et al. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633–643 (2000).

    Article  CAS  Google Scholar 

  63. Haslbeck, M., Franzmann, T., Weinfurtner, D. & Buchner, J. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12, 842–846 (2005).

    Article  CAS  Google Scholar 

  64. Bracher, A. & Hartl, F.U. Hsp90 structure: when two ends meet. Nat. Struct. Mol. Biol. 13, 478–480 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Sousa for the complete model of the Skp trimer and apologize to those colleagues whose work is not cited due to space restrictions. M.R.L. acknowledges funding support from the Canadian Institutes for Health Research (CIHR). M.R.L. holds scholar awards from CIHR and the Michael Smith Foundation for Health Research (MSFHR), and P.C.S. holds graduate scholarships from MSFHR and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel R Leroux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stirling, P., Bakhoum, S., Feigl, A. et al. Convergent evolution of clamp-like binding sites in diverse chaperones. Nat Struct Mol Biol 13, 865–870 (2006). https://doi.org/10.1038/nsmb1153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing