Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule observations of neck linker conformational changes in the kinesin motor protein

This article has been updated

Abstract

Kinesin-1 is a dimeric motor protein that moves cargo processively along microtubules. Kinesin motility has been proposed to be driven by the coordinated forward extension of the neck linker (a 12-residue peptide) in one motor domain and the rearward positioning of the neck linker in the partner motor domain. To test this model, we have introduced fluorescent dyes selectively into one subunit of the kinesin dimer and performed 'half-molecule' fluorescence resonance energy transfer to measure conformational changes of the neck linker. We show that when kinesin binds with both heads to the microtubule, the neck linkers in the rear and forward heads extend forward and backward, respectively. During ATP-driven motility, the neck linkers switch between these conformational states. These results support the notion that neck linker movements accompany the 'hand-over-hand' motion of the two motor domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule FRET measurements of monomeric kinesin.
Figure 2: Neck linker positions in microtubule-bound dimeric kinesin in the two-head-bound intermediate state.
Figure 3: Neck linker conformational changes in kinesin moving along microtubules under low ATP concentrations.
Figure 4: A model consistent with the FRET data shows that the neck linkers switch between backward-extending (undocked) and forward-extending (docked) conformational states during an 8-nm center-of-mass displacement of the kinesin dimer (16-nm movement of trailing head).

Similar content being viewed by others

Change history

  • 07 November 2006

    In the supplementary information initially published online to accompany this article, the Supplementary Video legends were inadvertently excluded. The error has been corrected online.

References

  1. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  2. Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201–214 (2005).

    Article  CAS  Google Scholar 

  3. Svoboda, K., Schmidt, C.F., Schnapp, B.J. & Block, S.M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  Google Scholar 

  4. Hackney, D.D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl. Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  Google Scholar 

  5. Vale, R.D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  CAS  Google Scholar 

  6. Kull, F.J., Sablin, E.P., Lau, R., Fletterick, R.J. & Vale, R.D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  CAS  Google Scholar 

  7. Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).

    Article  CAS  Google Scholar 

  8. Nitta, R., Kikkawa, M., Okada, Y. & Hirokawa, N. KIF1A alternatively use two loops to bind microtubules. Science 305, 678–683 (2004).

    Article  CAS  Google Scholar 

  9. Sack, S. et al. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry 36, 16155–16165 (1997).

    Article  CAS  Google Scholar 

  10. Kozielski, F. et al. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985–994 (1997).

    Article  CAS  Google Scholar 

  11. Sindelar, C.V. et al. Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy. Nat. Struct. Biol. 9, 844–848 (2002).

    CAS  PubMed  Google Scholar 

  12. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  Google Scholar 

  13. Vale, R.D. & Milligan, R.A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  Google Scholar 

  14. Yildiz, A., Tomishige, M., Vale, R.D. & Selvin, P.R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004).

    Article  CAS  Google Scholar 

  15. Rice, S. et al. Thermodynamic properties of the kinesin neck-region docking to the catalytic core. Biophys. J. 84, 1844–1854 (2003).

    Article  CAS  Google Scholar 

  16. Skiniotis, G. et al. Nucleotide-induced conformations in the neck region of dimeric kinesin. EMBO J. 22, 1518–1528 (2003).

    Article  CAS  Google Scholar 

  17. Rosenfeld, S.S., Jefferson, G.M. & King, P.H. ATP reorients the neck linker of kinesin in two sequential steps. J. Biol. Chem. 276, 40167–40174 (2001).

    Article  CAS  Google Scholar 

  18. Rosenfeld, S.S., Xing, J., Jefferson, G.M., Cheung, H.C. & King, P.H. Measuring kinesin's first step. J. Biol. Chem. 277, 36731–36739 (2002).

    Article  CAS  Google Scholar 

  19. Rosenfeld, S.S., Fordyce, P.M., Jefferson, G.M., King, P.H. & Block, S.M. Stepping and stretching: how kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550–18556 (2003).

    Article  CAS  Google Scholar 

  20. Asenjo, A.B., Krohn, N. & Sosa, H. Configuration of the two kinesin motor domains during ATP hydrolysis. Nat. Struct. Biol. 10, 836–842 (2003).

    Article  CAS  Google Scholar 

  21. Asenjo, A.B., Weinberg, Y. & Sosa, H. Nucleotide binding and hydrolysis induces a disorder-order transition in the kinesin neck-linker region. Nat. Struct. Mol. Biol. 13, 648–654 (2006).

    Article  CAS  Google Scholar 

  22. Case, R.B., Rice, S., Hart, C.L., Ly, B. & Vale, R.D. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol. 10, 157–160 (2000).

    Article  CAS  Google Scholar 

  23. Tomishige, M. & Vale, R.D. Controlling kinesin by reversible disulfide cross-linking: identifying the motility-producing conformational change. J. Cell Biol. 151, 1081–1092 (2000).

    Article  CAS  Google Scholar 

  24. Schief, W.R. & Howard, J. Conformational changes during kinesin motility. Curr. Opin. Cell Biol. 13, 19–28 (2001).

    Article  CAS  Google Scholar 

  25. Carter, N.J. & Cross, R.A. Kinesin's moonwalk. Curr. Opin. Cell Biol. 18, 61–67 (2006).

    Article  CAS  Google Scholar 

  26. Sablin, E.P. & Fletterick, R.J. Coordination between motor domains in processive kinesins. J. Biol. Chem. 279, 15707–15710 (2004).

    Article  CAS  Google Scholar 

  27. Kawaguchi, K. & Ishiwata, S. Nucleotide-dependent single- to double-headed binding of kinesin. Science 291, 667–669 (2001).

    Article  CAS  Google Scholar 

  28. Skerra, A. & Schmidt, T.G. Applications of a peptide ligand for streptavidin: the Strep-tag. Biomol. Eng. 16, 79–86 (1999).

    Article  CAS  Google Scholar 

  29. Tomishige, M., Klopfenstein, D.R. & Vale, R.D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263–2267 (2002).

    Article  CAS  Google Scholar 

  30. Carter, N.J. & Cross, R.A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    Article  CAS  Google Scholar 

  31. Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. & Sutoh, K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383 (1998).

    Article  CAS  Google Scholar 

  32. Shih, W.M., Gryczynski, Z., Lakowicz, J.R. & Spudich, J.A. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell 102, 683–694 (2000).

    Article  CAS  Google Scholar 

  33. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  34. Houdusse, A., Kalabokis, V.N., Himmel, D., Szent-Györgyi, A.G. & Cohen, C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470 (1999).

    Article  CAS  Google Scholar 

  35. Turner, J. et al. Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker. J. Biol. Chem. 276, 25496–25502 (2001).

    Article  CAS  Google Scholar 

  36. Kinosita, K., Jr. et al. How two-foot molecular motors may walk. Adv. Exp. Med. Biol. 565, 205–219 (2005).

    Article  CAS  Google Scholar 

  37. Hackney, D.D. The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP. Proc. Natl. Acad. Sci. USA 102, 18338–18343 (2005).

    Article  CAS  Google Scholar 

  38. Hua, W., Chung, J. & Gelles, J. Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295, 844–848 (2002).

    Article  CAS  Google Scholar 

  39. Asbury, C.L., Fehr, A.N. & Block, S.M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003).

    Article  CAS  Google Scholar 

  40. Kaseda, K., Higuchi, H. & Hirose, K. Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nat. Cell Biol. 5, 1079–1082 (2003).

    Article  CAS  Google Scholar 

  41. Higuchi, H., Bronner, C.E., Park, H.-W. & Endow, S.A. Rapid double 8-nm steps by a kinesin mutant. EMBO J. 23, 2993–2999 (2004).

    Article  CAS  Google Scholar 

  42. Ishii, Y., Yoshida, T., Funatsu, T., Wazawa, T. & Yanagida, T. Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chem. Phys. 247, 163–173 (1999).

    Article  CAS  Google Scholar 

  43. Gelles, J., Schnapp, B.J. & Sheetz, M.P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Thorn for development of the initial version of the microscope system and for discussions, and U. Wiedemann for support in cloning and protein purification. M.T. is supported by grants from the Mitsubishi Foundation, Asahi Glass Foundation, Sumitomo Foundation and Inamori Foundation and by Grants-in-Aid for Scientific Research on Priority Areas. R.D.V. is supported by grants from the Howard Hughes Medical Institute and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.T. and R.D.V. conceived and designed the experiments. M.T. performed the experiments and data analysis. N.S. contributed to microscope construction and programming. R.D.V. and M.T. discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Michio Tomishige or Ronald D Vale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effects of dye-labeling on processivity. (PDF 196 kb)

Supplementary Fig. 2

Histograms for monomer FRET. (PDF 123 kb)

Supplementary Fig. 3

Dynamic FRET traces for neck linker. (PDF 197 kb)

Supplementary Fig. 4

Histograms of dwell time between transitions. (PDF 73 kb)

Supplementary Fig. 5

Dynamic FRET traces for controls. (PDF 467 kb)

Supplementary Video 1

Photobleaching events of 342:342 heterodimer kinesin molecules labeled with Cy3 (donor) and Cy5 (acceptor) attached to an axoneme in the presence of 1 M ATP (excited at 514 nm). The sequence shows a molecule that initially has high FRET, and then suddenly the acceptor dye disappears with an accompanying single step recovery of donor fluorescence. This is a clear indication for single dye pair FRET. The donor fluorescence subsequently disappears in a single step, presumably due to photobleaching or detachment from the microtubule. Later, another dual labeled molecule binds to the axoneme and shows similar photobleaching process. Left half and right half of the images show donor and acceptor channels, respectively, which are projected side-by-side on the ICCD camera simultaneously. 1/2 real time. Scale bar, 2 µm. (MOV 1198 kb)

Supplementary Video 2

Single molecule FRET observation of 215-342 heterodimer kinesin moving along an axoneme in the presence of saturating ATP (1 mM). This video shows three fluorescence spots showing FRET moving processively along an axoneme. The axoneme lies approximately vertical in the image with its plus end pointing upwards. No apparent anticorrelated donor and acceptor intensity change is observed. 1/2 real time. Scale bar, 2 µm. (MOV 1597 kb)

Supplementary Video 3

Single molecule FRET observations of 215-342 heterodimer kinesin moving slowly along axonemes in the presence of low ATP (1 M). Video 3 and 4 represent the panels shown in Figure 3a, (far left and far right, respectively). Both of the spots move slowly upwards. Anti-correlated donor and acceptor intensity changes are observed. 1/2 real time. Scale bar, 2 µm. (MOV 1061 kb)

Supplementary Video 4

Single molecule FRET observations of 215-342 heterodimer kinesin moving slowly along axonemes in the presence of low ATP (1 M). Video 3 and 4 represent the panels shown in Figure 3a, (far left and far right, respectively). Both of the spots move slowly upwards. Anti-correlated donor and acceptor intensity changes are observed. 1/2 real time. Scale bar, 2 µm. (MOV 1095 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomishige, M., Stuurman, N. & Vale, R. Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nat Struct Mol Biol 13, 887–894 (2006). https://doi.org/10.1038/nsmb1151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing