Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extensive functional overlap between σ factors in Escherichia coli

Abstract

Bacterial core RNA polymerase (RNAP) must associate with a σ factor to recognize promoter sequences. Escherichia coli encodes seven σ factors, each believed to be specific for a largely distinct subset of promoters. Using microarrays representing the entire E. coli genome, we identify 87 in vivo targets of σ32, the heat-shock σ factor, and estimate that there are 120–150 σ32 promoters in total. Unexpectedly, 25% of these σ32 targets are located within coding regions, suggesting novel regulatory roles for σ32. The majority of σ32 promoter targets overlap with those of σ70, the housekeeping σ factor. Furthermore, their DNA sequence motifs are often interdigitated, with RNAPσ70 and RNAPσ32 initiating transcription in vitro with similar efficiency and from identical positions. σE-regulated promoters also overlap extensively with those for σ70. These results suggest that extensive functional overlap between σ factors is an important phenomenon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo binding of σ32 and RNAP to previously identified σ32 target promoters.
Figure 2: In vivo binding of σ32 and RNAP to novel σ32 targets not located in known promoter regions.
Figure 3: Extensive overlap between σ70 targets and targets of σ32 and σE.
Figure 4: Transcription from heat-shock promoters by Eσ70 and Eσ32 in vitro.

Similar content being viewed by others

References

  1. Gross, C.A., Lonetto, M. & Losick, R. Bacterial sigma factors. in Transcriptional Regulation Vol. 1 (eds. Knight, S.L. & Yamamoto, K.R.) 129–176 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1992).

    Google Scholar 

  2. Gruber, T. & Gross, C.A. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57, 441–466 (2003).

    Article  CAS  Google Scholar 

  3. Segal, G. & Ron, E.Z. Regulation of heat-shock response in bacteria. Ann. NY Acad. Sci. 851, 147–151 (1998).

    Article  CAS  Google Scholar 

  4. Kazmierczak, M.J., Wiedmann, M. & Boor, K.J. Alternative sigma factors and their roles in bacterial virulence. Microbiol. Mol. Biol. Rev. 69, 527–543 (2005).

    Article  CAS  Google Scholar 

  5. Losick, R. RNA polymerase sigma factors and cell-specific gene transcription in a simple developing organism. Harvey Lect. 90, 1–17 (1994–1995).

    PubMed  Google Scholar 

  6. Keseler, I.M. et al. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 33, D334–D337 (2005).

    Article  CAS  Google Scholar 

  7. Gaal, T. et al. Promoter recognition and discrimination by ESigmaS RNA polymerase. Mol. Microbiol. 42, 939–954 (2001).

    Article  CAS  Google Scholar 

  8. Hengge-Aronis, R. Stationary phase gene regulation: what makes an Escherichia coli promoter SigmaS-selective? Curr. Opin. Microbiol. 5, 591–595 (2002).

    Article  CAS  Google Scholar 

  9. Dupuy, B. et al. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors. Mol. Microbiol. 60, 1044–1057 (2006).

    Article  CAS  Google Scholar 

  10. Dominguez-Cuevas, P., Marin, P., Ramos, J.L & Marques, S. RNA polymerase holoenzymes can share a single transcription start site for the Pm promoter. Critical nucleotides in the −7 to −18 region are needed to select between RNA polymerase with Sigma38 or Sigma32. J. Biol. Chem. 280, 41315–41323 (2005).

    Article  CAS  Google Scholar 

  11. Johnson, W.C., Moran, C.P. & Losick, R. Two RNA polymerase sigma factors from Bacillus subtilis discriminate between overlapping promoters for a developmentally regulated gene. Nature 302, 800–804 (1983).

    Article  CAS  Google Scholar 

  12. Newlands, J.T., Gaal, T., Mecsas, J. & Gourse, R.L. Transcription of the Escherichia coli rrnB P1 promoter by the heat shock RNA polymerase (E sigma 32) in vitro. J. Bacteriol. 175, 661–668 (1993).

    Article  CAS  Google Scholar 

  13. Wang, P.Z. & Doi, R.H. Overlapping promoters transcribed by Bacillus subtilis Sigma 55 and Sigma 37 RNA polymerase holoenzymes during growth and stationary phases. J. Biol. Chem. 259, 8619–8625 (1984).

    CAS  PubMed  Google Scholar 

  14. Tatti, K.M. & Moran, C.P. Utilization of one promoter by two forms of RNA polymerase from Bacillus subtilis. Nature 314, 190–192 (1985).

    Article  CAS  Google Scholar 

  15. Grossman, A.D., Straus, D.B., Walter, W.A. & Gross, C.A. Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev. 1, 179–184 (1987).

    Article  CAS  Google Scholar 

  16. Wang, Y. & deHaseth, P.L. Sigma 32-dependent promoter activity in vivo: sequence determinants of the groE promoter. J. Bacteriol. 185, 5800–5806 (2003).

    Article  CAS  Google Scholar 

  17. Lemaux, P.G., Herendeen, S.L., Bloch, P.L. & Neidhardt, F.C. Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts. Cell 13, 427–434 (1978).

    Article  CAS  Google Scholar 

  18. Zhao, K., Liu, M. & Burgess, R.R. The global transcriptional response of Escherichia coli to induced Sigma 32 protein involves Sigma 32 regulon activation followed by inactivation and degradation of Sigma 32 in vivo. J. Biol. Chem. 280, 17758–17768 (2005).

    Article  CAS  Google Scholar 

  19. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  20. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).

    Article  CAS  Google Scholar 

  21. Wade, J.T., Reppas, N.B., Church, G.M. & Struhl, K. Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev. 19, 2619–2630 (2005).

    Article  CAS  Google Scholar 

  22. Grainger, D.C., Hurd, D., Harrison, M., Holdstock, J. & Busby, S.J. Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc. Natl. Acad. Sci. USA 102, 17693–17698 (2005).

    Article  CAS  Google Scholar 

  23. Raffaelle, M., Kanin, E.I., Vogt, J., Burgess, R.R. & Ansari, A.Z. Holoenzyme switching and stochastic release of Sigma factors from RNA polymerase in vivo. Mol. Cell 20, 357–366 (2005).

    Article  CAS  Google Scholar 

  24. Wade, J.T. & Struhl, K. Association of RNA polymerase with transcribed regions in Escherichia coli. Proc. Natl. Acad. Sci. USA 101, 17777–17782 (2004).

    Article  CAS  Google Scholar 

  25. Richmond, C.S., Glasner, J.D., Mau, R., Jin, H. & Blattner, F.R. Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 27, 3821–3835 (1999).

    Article  CAS  Google Scholar 

  26. Liu, Y. et al. A suite of web-based programs to search for transcriptional regulatory motifs. Nucleic Acids Res. 32, W204–W207 (2004).

    Article  CAS  Google Scholar 

  27. Cowing, D.W. et al. Consensus sequence for Escherichia coli heat shock gene promoters. Proc. Natl. Acad. Sci. USA 82, 2679–2683 (1985).

    Article  CAS  Google Scholar 

  28. Rhodius, V.A., Suh, W.C., Nonaka, G., West, J. & Gross, C.A. Conserved and variable functions of the SigmaE stress response in related genomes. PLoS Biol. 4, e2 (2006).

    Article  Google Scholar 

  29. Nonaka, G., Blankschien, M., Herman, C., Gross, C.A. & Rhodius, V.A. Regulon and promoter analysis of the E. coli heat shock factor, Sigma 32, reveals a multifaceted cellular response to heat stress. Genes Dev. 20, 1776–1789 (2006).

    Article  CAS  Google Scholar 

  30. Kawano, M., Reynolds, A.A., Miranda-Rios, J. & Storz, G. Detection of 5′- and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Res. 33, 1040–1050 (2005).

    Article  CAS  Google Scholar 

  31. Zhou, Y.N., Kusukawa, N., Erickson, J.W., Gross, C.A. & Yura, T. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor Sigma 32. J. Bacteriol. 170, 3640–3649 (1988).

    Article  CAS  Google Scholar 

  32. Charpentier, B. & Branlant, C. The Escherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme E Sigma 70 and by the heat shock RNA polymerase E Sigma 32. J. Bacteriol. 176, 830–839 (1994).

    Article  CAS  Google Scholar 

  33. Kourennaia, O.V., Tsujikawa, L. & deHaseth, P.L. Mutational analysis of Escherichia coli heat shock transcription factor Sigma 32 reveals similarities with Sigma 70 in recognition of the -35 promoter element and differences in promoter DNA melting and -10 recognition. J. Bacteriol. 187, 6762–6769 (2005).

    Article  CAS  Google Scholar 

  34. Erickson, J.W., Vaughn, V., Walter, W.A., Neidhardt, F.C. & Gross, C.A. Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev. 1, 419–432 (1987).

    Article  CAS  Google Scholar 

  35. Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, e328 (2004).

    Article  Google Scholar 

  36. Wang, S.T. et al. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 358, 16–37 (2006).

    Article  CAS  Google Scholar 

  37. Popham, D.L. & Setlow, P. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpF gene, which codes for a putative class A high-molecular-weight penicillin-binding protein. J. Bacteriol. 175, 4870–4876 (1993).

    Article  CAS  Google Scholar 

  38. Ramirez, M.I., Castellanos-Juarez, F.X., Yasbin, R.E. & Pedraza-Reyes, M. The ytkD (mutTA) gene of Bacillus subtilis encodes a functional antimutator 8-Oxo-(dGTP/GTP)ase and is under dual control of Sigma A and Sigma F RNA polymerases. J. Bacteriol. 186, 1050–1059 (2004).

    Article  CAS  Google Scholar 

  39. Paul, S., Zhang, X. & Hulett, F.M. Autoinduction of Bacillus subtilis phoPR operon transcription results from enhanced transcription from EsigmaA- and EsigmaE- responsive promoters by phosphorylated PhoP. J. Bacteriol. 186, 4262–4275 (2004).

    Article  CAS  Google Scholar 

  40. Nudler, E., Gusarov, I. & Bar-Nahum, G. Methods of walking with the RNA polymerase. Methods Enzymol. 371, 160–169 (2003).

    Article  CAS  Google Scholar 

  41. Borukhov, S. & Goldfarb, A. Recombinant Escherichia coli RNA polymerase: purification of individually overexpressed subunits and in vitro assembly. Protein Expr. Purif. 4, 503–511 (1993).

    Article  CAS  Google Scholar 

  42. Nguyen, L.H., Jensen, D.B. & Burgess, R.R. Overproduction and purification of Sigma 32, the Escherichia coli heat shock transcription factor. Protein Expr. Purif. 4, 425–433 (1993).

    Article  CAS  Google Scholar 

  43. Breyer, M.J., Thompson, N.E. & Burgess, R.R. Identification of the epitope for a highly cross-reactive monoclonal antibody on the major Sigma factor of bacterial RNA polymerase. J. Bacteriol. 179, 1404–1408 (1997).

    Article  CAS  Google Scholar 

  44. Bar-Nahum, G. & Nudler, E. Isolation and characterization of Sigma70-retaining transcription elongation complexes from Escherichia coli. Cell 106, 443–451 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Butland, J. Greenblatt and A. Emili (University of Toronto) for the TAP-tagged rpoH strain, N. Reppas, R.J. Geisberg, Z. Moqtaderi, M. Schwabish, X. Fan and L.T. Westblade for helpful discussions and C. Baisden for expert technical assistance. We also thank C. Gross for communicating results before publication. J.T.W. was supported by a Charles A. King Trust Postdoctoral Fellowship, Bank of America, Co-Trustee. This work was supported by US National Institutes of Health grants GM30186 (K.S.), and GM72814 and GM58750 (E.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin Struhl or Evgeny Nudler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Purified σ factors. (PDF 183 kb)

Supplementary Fig. 2

Formation of the promoter-proximal elongation complex (EC18) by Eσ70 and Eσ32 at the groE template. (PDF 87 kb)

Supplementary Fig. 3

Overlap between σE targets and targets of σ70. (PDF 99 kb)

Supplementary Fig. 4

Transcription from σE promoters by Eσ70 in vitro. (PDF 147 kb)

Supplementary Table 1

Summary of genome coordinates used in analyses. (XLS 142 kb)

Supplementary Data

Transcript map and genome-wide binding data for σ70. (PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, J., Roa, D., Grainger, D. et al. Extensive functional overlap between σ factors in Escherichia coli. Nat Struct Mol Biol 13, 806–814 (2006). https://doi.org/10.1038/nsmb1130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing