Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins

Abstract

Heptahelical receptors activate intracellular signaling pathways by catalyzing GTP for GDP exchange on the heterotrimeric G protein α subunit (Gα). Despite the crucial role of this process in cell signaling, little is known about the mechanism of G protein activation. Here we explore the structural basis for receptor-mediated GDP release using electron paramagnetic resonance spectroscopy. Binding to the activated receptor (R*) causes an apparent rigid-body movement of the α5 helix of Gα that would perturb GDP binding at the β6-α5 loop. This movement was not observed when a flexible loop was inserted between the α5 helix and the R*-binding C terminus, which uncouples R* binding from nucleotide exchange, suggesting that this movement is necessary for GDP release. These data provide the first direct observation of R*-mediated conformational changes in G proteins and define the structural basis for GDP release from Gα.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of spin-labeled mutants.
Figure 2: EPR spectra demonstrate receptor activation–dependent conformational changes in the α5 helix.
Figure 3: Movement of the α5 helix is necessary for GDP release.
Figure 4: DEER distance measurements support the proposed rotation-translation of the α5 helix.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cabrera-Vera, T.M. et al. Insights into G protein structure, runction, and regulation. Endocr. Rev. 24, 765–781 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Higashijima, T., Ferguson, K.M., Smigel, M.D. & Gilman, A.G. The Effect of GTP and Mg2+ on the GTPase activity and the fluorescentproperties of Go . J. Biol. Chem. 262, 757–761 (1987).

    CAS  PubMed  Google Scholar 

  3. Rodbell, M., Krans, H.M., Pohl, S.L. & Birnbaumer, L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J. Biol. Chem. 246, 1872–1876 (1971).

    CAS  PubMed  Google Scholar 

  4. Emeis, D., Kuhn, H., Reichert, J. & Hofmann, K.P. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett. 143, 29–34 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Bornancin, F., Pfister, C. & Chabre, M. The transitory complex between photoexcited rhodopsin and transducin. Reciprocal interaction between the retinal site in rhodopsin and the nucleotide site in transducin. Eur. J. Biochem. 184, 687–698 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Hamm, H.E. et al. Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science 241, 832–835 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Itoh, Y., Cai, K. & Khorana, H.G. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent. Proc. Natl. Acad. Sci. USA 98, 4883–4887 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Onrust, R. et al. Receptor and βγ binding sites in the α subunit of the retinal G protein transducin. Science 275, 381–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Cai, K., Itoh, Y. & Khorana, H.G. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: Use of a photoactivatable reagent. Proc. Natl. Acad. Sci. USA 98, 4877–4882 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dratz, E.A. et al. NMR structure of a receptor-bound G-protein peptide. Nature 363, 276–281 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Kisselev, O.G. et al. Light-activated rhodopsin induces structural binding motif in G protein α subunit. Proc. Natl. Acad. Sci. USA 95, 4270–4275 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mazzoni, M.R. & Hamm, H.E. Interaction of transducin with light-activated rhodopsin protects it from proteolytic digestion by trypsin. J. Biol. Chem. 271, 30034–30040 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Taylor, J.M., Jacob-Mosier, G.G., Lawton, R.G., VanDort, M. & Neubig, R.R. Receptor and membrane interaction sites on Gβ. A receptor-derived peptide binds to the carboxyl terminus. J. Biol. Chem. 271, 3336–3339 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Kisselev, O.G., Ermolaeva, M.V. & Gautam, N. A farnesylated domain in the G protein γ subunit is a specific determinant of receptor coupling. J. Biol. Chem. 269, 21399–21402 (1994).

    CAS  PubMed  Google Scholar 

  15. Bourne, H.R. How receptors talk to trimeric G proteins. Curr. Opin. Cell Biol. 9, 134–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Hamm, H.E. The many faces of G protein signaling. J. Biol. Chem. 273, 669–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Marin, E.P., Krishna, A.G. & Sakmar, T.P. Rapid activation of transducin by mutations distant from the nucleotide-binding site. Evidence for a mechanistic model of receptor-catalyzed nucleotide exchange by G proteins. J. Biol. Chem. 276, 27400–27405 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Marin, E.P., Krishna, A.G. & Sakmar, T.P. Disruption of the α5 helix of transducin impairs rhodopsin-catalyzed nucleotide exchange. Biochemistry 41, 6988–6994 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Natochin, M., Moussaif, M. & Artemyev, N.O. Probing the mechanism of rhodopsin-catalyzed transducin activation. J. Neurochem. 77, 202–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Hubbell, W.L., Cafiso, D.S. & Altenbach, C. Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7, 735–739 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Wall, M.A. et al. The structure of the G protein heterotrimer Gi α 1β1γ2 . Cell 83, 1047–1058 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Medkova, M., Preininger, A.M., Yu, N.J., Hubbell, W.L. & Hamm, H.E. Conformational changes in the amino-rerminal helix of the G protein αi1 following dissociation from Gβγ subunit and activation. Biochemistry 41, 9962–9972 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Mchaourab, H.S., Lietzow, M.A., Hideg, K. & Hubbell, W.L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35, 7692–7704 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Langen, R., Oh, K.J., Cascio, D. & Hubbell, W.L. Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39, 8396–8405 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Columbus, L. & Hubbell, W.L. Mapping backbone dynamics in solution with site-directed spin labeling: GCN4–58 bZip free and bound to DNA. Biochemistry 43, 7273–7287 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Coleman, D.E. et al. Structures of active conformations of Gi α 1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Coleman, D.E. et al. Crystallization and preliminary crystallographic studies of Giα1 and mutants of Giα1 in the GTP and GDP-bound states. J. Mol. Biol. 238, 630–634 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Pannier, M., Veit, S., Godt, A., Jeschke, G. & Spiess, H.W. Dead-time free measurement of dipole-dipole interactions between electron spins. J. Magn. Reson. 142, 331–340 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka, T. et al. α helix content of G protein α subunit is decreased upon activation by receptor mimetics. J. Biol. Chem. 273, 3247–3252 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Thomas, T.C., Schmidt, C.J. & Neer, E.J. G-protein αo subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity. Proc. Natl. Acad. Sci. USA 90, 10295–10298 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iiri, T., Herzmark, P., Nakamoto, J.M., van Dop, C. & Bourne, H.R. Rapid GDP release from Gs α in patients with gain and loss of endocrine function. Nature 371, 164–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Posner, B.A., Mixon, M.B., Wall, M.A., Sprang, S.R. & Gilman, A.G. The A326S mutant of Gi α 1 as an approximation of the receptor-bound state. J. Biol. Chem. 273, 21752–21758 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Ceruso, M.A., Periole, X. & Weinstein, H. Molecular dynamics simulations of transducin: interdomain and front to back communication in activation and nucleotide exchange. J. Mol. Biol. 338, 469–481 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Grishina, G. & Berlot, C.H. Mutations at the domain interface of Gsα impair receptor-mediated activation by altering receptor and guanine nucleotide binding. J. Biol. Chem. 273, 15053–15060 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Grishina, G. & Berlot, C.H. Surface-exposed region of Gsa in which substitutions decrease receptor-mediated activation and increase receptor affinity. Mol. Pharmacol. 57, 1081–1092 (2000).

    CAS  PubMed  Google Scholar 

  36. Pereira, R. & Cerione, R.A. A switch 3 point mutation in the α subunit of transducin yields a unique dominant-negative inhibitor. J. Biol. Chem. 280, 35696–35703 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Thomas, T.O., Bae, H., Medkova, M. & Hamm, H.E. An intramolecular contact in Gα transducin that participates in maintaining its intrinsic GDP release rate. Mol. Cell Biol. Res. Commun. 4, 282–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Warner, D.R., Weng, G., Yu, S., Matalon, R. & Weinstein, L.S. A novel mutation in the switch 3 region of Gsα in a patient with Albright hereditary osteodystrophy impairs GDP binding and receptor activation. J. Biol. Chem. 273, 23976–23983 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Warner, D.R. & Weinstein, L.S. A mutation in the heterotrimeric stimulatory guanine nucleotide binding protein α-subunit with impaired receptor-mediated activation because of elevated GTPase activity. Proc. Natl. Acad. Sci. USA 96, 4268–4272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Majumdar, S., Ramachandran, S. & Cerione, R.A. Perturbing the linker regions of the α-subunit of transducin: a new class of constitutively active GTP-binding proteins. J. Biol. Chem. 279, 40137–40145 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Marin, E.P. et al. The function of interdomain interactions in controlling nucleotide exchange rates in transducin. J. Biol. Chem. 276, 23873–23880 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Iiri, T., Farfel, Z. & Bourne, H.R. G-protein diseases furnish a model for the turn-on switch. Nature 394, 35–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Cherfils, J. & Chabre, M. Activation of G-protein Gα subunits by receptors through Gα–Gβ and Gα–Gγ interactions. Trends Biochem. Sci. 28, 13–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Denker, B.M., Boutin, P.M. & Neer, E.J. Interactions between the amino- and carboxyl-terminal regions of Gα subunits: analysis of mutated Gαo/Gαi2 chimeras. Biochemistry 34, 5544–5553 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Denker, B.M., Schmidt, C.J. & Neer, E.J. Promotion of the GTP-liganded state of the Goα protein by deletion of the C terminus. J. Biol. Chem. 267, 9998–10002 (1992).

    CAS  PubMed  Google Scholar 

  46. Natochin, M., Muradov, K.G., McEntaffer, R.L. & Artemyev, N.O. Rhodopsin recognition by mutant Gsα containing C-terminal residues of transducin. J. Biol. Chem. 275, 2669–2675 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Oliveira, L., Paiva, A.C. & Vriend, G. A low resolution model for the interaction of G proteins with G protein-coupled receptors. Protein Eng. 12, 1087–1095 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Mazzoni, M.R., Malinksi, J.A. & Hamm, H.E. Structural analysis of rod GTP-binding protein, Gt. Limited proteolytic digestion pattern of Gt with four proteases defines monoclonal antibody epitope. J. Biol. Chem. 266, 14072–14081 (1991).

    CAS  PubMed  Google Scholar 

  49. Jeschke, G., Koch, A., Jonas, U. & Godt, A. Direct conversion of EPR dipolar time evolution data to distance distributions. J. Magn. Reson. 155, 72–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Weese, J. A reliable and fast method for the solution of Fredholm integral equations of the first kind based on Tikhonov regularization. Comput. Phys. Commun. 69, 99–111 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (W.L.H. and H.E.H.), a Public Health Service Award for the Medical Scientist Training Program (W.M.O.), the PhRMA Foundation (W.M.O.) and the Jules Stein Professorship (W.L.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wayne L Hubbell or Heidi E Hamm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Fluorescence assay of nucleotide exchange. (PDF 129 kb)

Supplementary Fig. 2

Rhodopsin binding assay. (PDF 125 kb)

Supplementary Fig. 3

Full EPR spectra for single mutants. (PDF 627 kb)

Supplementary Fig. 4

Biochemical characterization of the 5G insertion mutant. (PDF 24 kb)

Supplementary Fig. 5

Structural changes upon GTPγS addition to the R*-G protein complex. (PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldham, W., Van Eps, N., Preininger, A. et al. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat Struct Mol Biol 13, 772–777 (2006). https://doi.org/10.1038/nsmb1129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing