Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for HIV-1 neutralization by a gp41 fusion intermediate–directed antibody

Abstract

Elicitation of potent and broadly neutralizing antibodies is an important goal in designing an effective human immunodeficiency virus-1 (HIV-1) vaccine. The HIV-1 gp41 inner-core trimer represents a functionally and structurally conserved target for therapeutics. Here we report the 2.0-Å-resolution crystal structure of the complex between the antigen-binding fragment of D5, an HIV-1 cross-neutralizing antibody, and 5-helix, a gp41 inner-core mimetic. Both binding and neutralization depend on residues in the D5 CDR H2 loop protruding into the conserved gp41 hydrophobic pocket, as well as a large pocket in D5 surrounding core gp41 residues. Kinetic analysis of D5 mutants with perturbed D5-gp41 interactions suggests that D5 persistence at the fusion intermediate is crucial for neutralization. Thus, our data validate the gp41 N-peptide trimer fusion intermediate as a target for neutralizing antibodies and provide a template for identification of more potent and broadly neutralizing molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the D5–5-helix complex.
Figure 2: Contacts at the D5–5-helix interface.
Figure 3: Comparison of D5 CDR H2 interaction with gp41 hydrophobic pocket to the interactions of other pocket-binding molecules.
Figure 4: D5-derived pocket filled by gp41 N-helix B Trp571 and Leu568.
Figure 5: Model of a D5 IgG molecule accessing the gp41 fusion intermediate.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Burton, D.R. et al. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol. 5, 233–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Wyatt, R. & Sodroski, J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884–1888 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Kwong, P.D. et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Poignard, P., Saphire, E.O., Parren, P.W. & Burton, D.R. gp120: biologic aspects of structural features. Annu. Rev. Immunol. 19, 253–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Zwick, M.B., Saphire, E.O. & Burton, D.R. gp41: HIV's shy protein. Nat. Med. 10, 133–134 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burton, D.R., Stanfield, R.L. & Wilson, I.A. Antibody vs. HIV in a clash of evolutionary titans. Proc. Natl. Acad. Sci. USA 102, 14943–14948 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calarese, D.A. et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300, 2065–2071 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Saphire, E.O. et al. Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science 293, 1155–1159 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Stanfield, R.L., Gorny, M.K., Williams, C., Zolla-Pazner, S. & Wilson, I.A. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447–52D. Structure 12, 193–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Thali, M. et al. Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120–CD4 binding. J. Virol. 67, 3978–3988 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Labrijn, A.F. et al. Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J. Virol. 77, 10557–10565 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conley, A.J. et al. Neutralization of divergent human immunodeficiency virus type 1 variants and primary isolates by IAM-41–2F5, an anti-gp41 human monoclonal antibody. Proc. Natl. Acad. Sci. USA 91, 3348–3352 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zwick, M.B. et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J. Virol. 75, 10892–10905 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zwick, M.B. et al. The long third complementarity-determining region of the heavy chain is important in the activity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5. J. Virol. 78, 3155–3161 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baba, T.W. et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 6, 200–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Mascola, J.R. et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Veazey, R.S. et al. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat. Med. 9, 343–346 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Mascola, J.R. et al. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73, 4009–4018 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Trkola, A. et al. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat. Med. 11, 615–622 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Tan, K., Liu, J., Wang, J., Shen, S. & Lu, M. Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc. Natl. Acad. Sci. USA 94, 12303–12308 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weissenhorn, W., Dessen, A., Harrison, S.C., Skehel, J.J. & Wiley, D.C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Chan, D.C., Fass, D., Berger, J.M. & Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Furuta, R.A., Wild, C.T., Weng, Y. & Weiss, C.D. Capture of an early fusion-active conformation of HIV-1 gp41. Nat. Struct. Biol. 5, 276–279 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Wild, C., Oas, T., McDanal, C., Bolognesi, D. & Matthews, T. A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc. Natl. Acad. Sci. USA 89, 10537–10541 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferrer, M. et al. Selection of gp41-mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements. Nat. Struct. Biol. 6, 953–960 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Eckert, D.M., Malashkevich, V.N., Hong, L.H., Carr, P.A. & Kim, P.S. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99, 103–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Lalezari, J.P. et al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N. Engl. J. Med. 348, 2175–2185 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Sanders, R.W., Korber, B., Lu, M., Berkhout, B. & Moore, J.P. Mutational analyses and natural variability of the gp41 ectodomain. in HIV Sequence Compendium (eds. Kuiken C. et al.) 43–68 (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 2002).

  30. Hamburger, A.E., Kim, S., Welch, B.D. & Kay, M.S. Steric accessibility of the HIV-1 gp41 N-trimer region. J. Biol. Chem. 280, 12567–12572 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Louis, J.M., Nesheiwat, I., Chang, L., Clore, G.M. & Bewley, C.A. Covalent trimers of the internal N-terminal trimeric coiled-coil of gp41 and antibodies directed against them are potent inhibitors of HIV envelope-mediated cell fusion. J. Biol. Chem. 278, 20278–20285 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Miller, M.D. et al. A human monoclonal antibody neutralizes diverse HIV-1 isolates by binding a critical gp41 epitope. Proc. Natl. Acad. Sci. USA 102, 14759–14764 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Root, M.J., Kay, M.S. & Kim, P.S. Protein design of an HIV-1 entry inhibitor. Science 291, 884–888 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Eckert, D.M. & Kim, P.S. Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region. Proc. Natl. Acad. Sci. USA 98, 11187–11192 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Al-Lazikani, B., Lesk, A.M. & Chothia, C. Standard conformations for the canonical structures of immunoglobulins. J. Mol. Biol. 273, 927–948 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Sundberg, E.J. & Mariuzza, R.A. Molecular recognition in antibody-antigen complexes. Adv. Protein Chem. 61, 119–160 (2002).

    Article  PubMed  Google Scholar 

  37. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Davies, D.R. & Cohen, G.H. Interactions of protein antigens with antibodies. Proc. Natl. Acad. Sci. USA 93, 7–12 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, G. et al. The structure of an HIV-1 specific cell entry inhibitor in complex with the HIV-1 gp41 trimeric core. Bioorg. Med. Chem. 8, 2219–2227 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, C.C. et al. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc. Natl. Acad. Sci. USA 101, 2706–2711 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, X., Kurteva, S., Lee, S. & Sodroski, J. Stoichiometry of antibody neutralization of human immunodeficiency virus type 1. J. Virol. 79, 3500–3508 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, M.Y. et al. Identification and characterization of a new cross-reactive human immunodeficiency virus type 1-neutralizing human monoclonal antibody. J. Virol. 78, 9233–9242 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Munoz-Barroso, I., Durell, S., Sakaguchi, K., Appella, E. & Blumenthal, R. Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J. Cell Biol. 140, 315–323 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Selzer, T., Albeck, S. & Schreiber, G. Rational design of faster associating and tighter binding protein complexes. Nat. Struct. Biol. 7, 537–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. MacCallum, R.M., Martin, A.C. & Thornton, J.M. Antibody-antigen interactions: contact analysis and binding site topography. J. Mol. Biol. 262, 732–745 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Lobo, E.D., Hansen, R.J. & Balthasar, J.P. Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 93, 2645–2668 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Li, A. et al. Synergistic neutralization of a chimeric SIV/HIV type 1 virus with combinations of human anti-HIV type 1 envelope monoclonal antibodies or hyperimmune globulins. AIDS Res. Hum. Retroviruses 13, 647–656 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Bianchi, E. et al. Covalent stabilization of coiled coils of the HIV gp41 N region yields extremely potent and broad inhibitors of viral infection. Proc. Natl. Acad. Sci. USA 102, 12903–12908 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  50. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Help with data collection from the European Synchrotron Radiation Facility staff and the technical assistance and discussions of members of the Carfí laboratory are greatly appreciated. We also thank B. Chen and M. Bottomley for critically reading the manuscript and M. Emili for help with the artwork. SEC-MALS analysis was performed at the W.M. Keck Foundation Biotechnology Resource Laboratory at Yale University. M.L. is the recipient of a European Molecular Biology Organization Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Carfí.

Ethics declarations

Competing interests

Several authors of this paper are current or former employees of Merck & Co., Inc.

Supplementary information

Supplementary Fig. 1

Representative electron density. (PDF 272 kb)

Supplementary Fig. 2

D5 CDR H2 insertion into gp41 hydrophobic pocket. (PDF 58 kb)

Supplementary Fig. 3

D5 Fab binding around the gp41 N-peptide trimer. (PDF 60 kb)

Supplementary Table 1

Characterization of D5 CDR loops. (PDF 21 kb)

Supplementary Table 2

Buried surfaces in D5–5-helix and other gp41 inner core complexes. (PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luftig, M., Mattu, M., Di Giovine, P. et al. Structural basis for HIV-1 neutralization by a gp41 fusion intermediate–directed antibody. Nat Struct Mol Biol 13, 740–747 (2006). https://doi.org/10.1038/nsmb1127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing