Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

How do transcription factors select specific binding sites in the genome?

How does a transcription factor select a specific DNA response element given the presence of degenerate sequences? To date, this question has largely been viewed from the standpoint of DNA sequence variability and transcription factor binding affinity under steady-state conditions. Here we propose that to address this problem, it is also necessary to account for fluctuating cellular conditions. These lead to dynamic changes in the ensemble of protein (and DNA) conformational states via allosteric effects.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of selective binding of transcriptional control proteins to their degenerate response elements under different environmental conditions.
Figure 2: Schematic illustration of the free-energy-landscape shifts associated with the binding of the transcriptional control protein (TC) to various degenerate response elements (RE1, RE2, RE3 and RE4).

References

  1. Riley, T., Sontag, E., Chen, P. & Levine, A. Nat. Rev. Mol. Cell Biol. 9, 402–412 (2008).

    Article  CAS  Google Scholar 

  2. Ma, B., Kumar, S., Tsai, C.J. & Nussinov, R. Protein Eng. 12, 713–720 (1999).

    Article  CAS  Google Scholar 

  3. Kumar, S., Ma, B., Tsai, C.J., Sinha, N. & Nussinov, R. Protein Sci. 9, 10–19 (2000).

    Article  CAS  Google Scholar 

  4. Tsai, C.J., Ma, B. & Nussinov, R. Proc. Natl. Acad. Sci. USA 96, 9970–9972 (1999).

    Article  CAS  Google Scholar 

  5. Lange, O.F. et al. Science 320, 1471–1475 (2008).

    Article  CAS  Google Scholar 

  6. Boehr, D.D. & Wright, P.E. Science 320, 1429–1430 (2008).

    Article  CAS  Google Scholar 

  7. Gunasekaran, K., Ma, B. & Nussinov, R. Proteins 57, 433–443 (2004).

    Article  CAS  Google Scholar 

  8. del Sol, A., Tsai, C.J., Ma, B. & Nussinov, R. Structure 17, 1042–1050 (2009).

    Article  CAS  Google Scholar 

  9. Panne, D. Curr. Opin. Struct. Biol. 18, 236–242 (2008).

    Article  CAS  Google Scholar 

  10. Weinberg, R.L., Veprintsev, D.B., Bycroft, M. & Fersht, A.R. J. Mol. Biol. 348, 589–596 (2005).

    Article  CAS  Google Scholar 

  11. Espinosa, J.M. Oncogene 27, 4013–4023 (2008).

    Article  CAS  Google Scholar 

  12. El Marzouk, S., Gahattamaneni, R., Joshi, S.R. & Scovell, W.M. J. Steroid Biochem. Mol. Biol. 110, 186–195 (2008).

    Article  CAS  Google Scholar 

  13. Chandra, V. et al. Nature 456, 350–356 (2008).

    Article  Google Scholar 

  14. Boehr, D.D., Nussinov, R. & Wright, P.E. Nat. Chem. Biol. 5, 789–796 (2009).

    Article  CAS  Google Scholar 

  15. Ma, B. & Nussinov, R. Proc. Natl. Acad. Sci. USA 106, 6887–6888 (2009).

    Article  CAS  Google Scholar 

  16. Völker, J., Klump, H.H. & Breslauer, K.J. Proc. Natl. Acad. Sci. USA 105, 18326–18330 (2008).

    Article  Google Scholar 

  17. Chaires, J.B. ACS Chem. Biol. 3, 207–209 (2008).

    Article  CAS  Google Scholar 

  18. Thornborrow, E.C. & Manfredi, J.J. J. Biol. Chem. 276, 15598–15608 (2001).

    Article  CAS  Google Scholar 

  19. Sullivan, A. & Lu, X. Br. J. Cancer 96, 196–200 (2007).

    Article  CAS  Google Scholar 

  20. Ahn, J., Byeon, I.J., Byeon, C.H. & Gronenborn, A.M. J. Biol. Chem. 284, 13812–13822 (2009).

    Article  CAS  Google Scholar 

  21. Nagy, L. & Schwabe, J.W. Trends Biochem. Sci. 29, 317–324 (2004).

    Article  CAS  Google Scholar 

  22. Meijsing, S.H. et al. Science 324, 407–410 (2009).

    Article  CAS  Google Scholar 

  23. Tsai, C.J., Del Sol, A. & Nussinov, R. Mol. Biosyst. 5, 207–216 (2009).

    Article  CAS  Google Scholar 

  24. Frauenfelder, H., Sligar, S.G. & Wolynes, P.G. Science 254, 1598–1603 (1991).

    Article  CAS  Google Scholar 

  25. Smock, R.G. & Gierasch, L.M. Science 324, 198–203 (2009).

    Article  CAS  Google Scholar 

  26. Liu, J. & Nussinov, R. PLoS Comput. Biol. 5, e1000527 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded in whole or in part with federal funds from the US National Cancer Institute, National Institutes of Health, under contract number HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government. This research was supported (in part) by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Nussinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Y., Tsai, CJ., Ma, B. et al. How do transcription factors select specific binding sites in the genome?. Nat Struct Mol Biol 16, 1118–1120 (2009). https://doi.org/10.1038/nsmb1109-1118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1109-1118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing